Error.stackTraceLimit = Infinity
{Scope} = require './scope'
{RESERVED, STRICT_PROSCRIBED} = require './lexer'
iced = require './iced'
nodes.coffee
contains all of the node classes for the syntax tree. Most
nodes are created as the result of actions in the grammar,
but some are created by other nodes as a method of code generation. To convert
the syntax tree into a string of JavaScript code, call compile()
on the root.
Error.stackTraceLimit = Infinity
{Scope} = require './scope'
{RESERVED, STRICT_PROSCRIBED} = require './lexer'
iced = require './iced'
Import the helpers we plan to use.
{compact, flatten, extend, merge, del, starts, ends, last, some,
addLocationDataFn, locationDataToString, throwSyntaxError} = require './helpers'
Functions required by parser
exports.extend = extend
exports.addLocationDataFn = addLocationDataFn
Constant functions for nodes that don't need customization.
YES = -> yes
NO = -> no
THIS = -> this
NEGATE = -> @negated = not @negated; this
NULL = -> new Value new Literal 'null'
The various nodes defined below all compile to a collection of CodeFragment objects.
A CodeFragments is a block of generated code, and the location in the source file where the code
came from. CodeFragments can be assembled together into working code just by catting together
all the CodeFragments' code
snippets, in order.
exports.CodeFragment = class CodeFragment
constructor: (parent, code) ->
@code = "#{code}"
@locationData = parent?.locationData
@type = parent?.constructor?.name or 'unknown'
toString: ->
"#{@code}#{if @locationData then ": " + locationDataToString(@locationData) else ''}"
Convert an array of CodeFragments into a string.
fragmentsToText = (fragments) ->
(fragment.code for fragment in fragments).join('')
The Base is the abstract base class for all nodes in the syntax tree.
Each subclass implements the compileNode
method, which performs the
code generation for that node. To compile a node to JavaScript,
call compile
on it, which wraps compileNode
in some generic extra smarts,
to know when the generated code needs to be wrapped up in a closure.
An options hash is passed and cloned throughout, containing information about
the environment from higher in the tree (such as if a returned value is
being requested by the surrounding function), information about the current
scope, and indentation level.
exports.Base = class Base
constructor: ->
@icedContinuationBlock = null
iced AST node flags -- since we make several passes through the tree setting these bits, we'll actually just flip bits in the nodes, rather than setting function pointers to YES or NO.
@icedLoopFlag = false
@icedNodeFlag = false
@icedGotCpsSplitFlag = false
@icedCpsPivotFlag = false
@icedHasAutocbFlag = false
@icedFoundArguments = false
@icedParentAwait = null
@icedCallContinuationFlag = false
Common logic for determining whether to wrap this node in a closure before
compile: (o, lvl) ->
fragmentsToText @compileToFragments o, lvl
Common logic for determining whether to wrap this node in a closure before compiling it, or to compile directly. We need to wrap if this node is a statement, and it's not a pureStatement, and we're not at the top level of a block (which would be unnecessary), and we haven't already been asked to return the result (because statements know how to return results).
compileToFragments: (o, lvl) ->
o = extend {}, o
o.level = lvl if lvl
node = @unfoldSoak(o) or this
node.tab = o.indent
if node.icedHasContinuation() and not node.icedGotCpsSplitFlag
node.icedCompileCps o
else if o.level is LEVEL_TOP or not node.isStatement(o)
node.compileNode o
else
node.compileClosure o
Statements converted into expressions via closure-wrapping share a scope object with their parent closure, to preserve the expected lexical scope.
compileClosure: (o) ->
if jumpNode = @jumps()
jumpNode.error 'cannot use a pure statement in an expression'
o.sharedScope = yes
Solution for an iced corner case:
foo = (autocb) -> x = (i for i in [0..10]) x
We don't want the autocb to fire in the evaluation of the list comprehension on the RHS.
@icedClearAutocbFlags()
Closure.wrap(this).compileNode o
If the code generation wishes to use the result of a complex expression in multiple places, ensure that the expression is only ever evaluated once, by assigning it to a temporary variable. Pass a level to precompile.
If level
is passed, then returns [val, ref]
, where val
is the compiled value, and ref
is the compiled reference. If level
is not passed, this returns [val, ref]
where
the two values are raw nodes which have not been compiled.
cache: (o, level, reused) ->
unless @isComplex()
ref = if level then @compileToFragments o, level else this
[ref, ref]
else
ref = new Literal reused or o.scope.freeVariable 'ref'
sub = new Assign ref, this
if level then [sub.compileToFragments(o, level), [@makeCode(ref.value)]] else [sub, ref]
cacheToCodeFragments: (cacheValues) ->
[fragmentsToText(cacheValues[0]), fragmentsToText(cacheValues[1])]
Construct a node that returns the current node's result. Note that this is overridden for smarter behavior for many statement nodes (e.g. If, For)...
makeReturn: (res) ->
me = @unwrapAll()
if res
new Call new Literal("#{res}.push"), [me]
else
new Return me, @icedHasAutocbFlag
Does this node, or any of its children, contain a node of a certain kind?
Recursively traverses down the children nodes and returns the first one
that verifies pred
. Otherwise return undefined. contains
does not cross
scope boundaries.
contains: (pred) ->
node = undefined
@traverseChildren no, (n) ->
if pred n
node = n
return no
node
Pull out the last non-comment node of a node list.
lastNonComment: (list) ->
i = list.length
return list[i] while i-- when list[i] not instanceof Comment
null
toString
representation of the node, for inspecting the parse tree.
This is what coffee --nodes
prints out.
toString: (idt = '', name = @constructor.name) ->
extras = []
extras.push "A" if @icedNodeFlag
extras.push "L" if @icedLoopFlag
extras.push "P" if @icedCpsPivotFlag
extras.push "C" if @icedHasAutocbFlag
extras.push "D" if @icedParentAwait
extras.push "G" if @icedFoundArguments
if extras.length
extras = " (" + extras.join('') + ")"
tree = '\n' + idt + name
tree = '\n' + idt + name
tree += '?' if @soak
tree += extras
@eachChild (node) -> tree += node.toString idt + TAB
if @icedContinuationBlock
idt += TAB
tree += '\n' + idt + "Continuation"
tree += @icedContinuationBlock.toString idt + TAB
tree
Passes each child to a function, breaking when the function returns false
.
eachChild: (func) ->
return this unless @children
for attr in @children when @[attr]
for child in flatten [@[attr]]
return this if func(child) is false
this
traverseChildren: (crossScope, func) ->
@eachChild (child) ->
recur = func(child)
child.traverseChildren(crossScope, func) unless recur is no
invert: ->
new Op '!', this
unwrapAll: ->
node = this
continue until node is node = node.unwrap()
node
Start iced additions...
Don't try this at home with actual human kids. Added for iced for slightly different tree traversal mechanics.
flattenChildren : ->
out = []
for attr in @children when @[attr]
for child in flatten [@[attr]]
out.push (child)
out
Statements that need CPS translation will have to be split into pieces like so.
icedCompileCps : (o) ->
@icedGotCpsSplitFlag = true
code = CpsCascade.wrap this, @icedContinuationBlock, null, o
code.compileNode o
If the code generation wishes to use the result of a complex expression
AST Walking Routines for CPS Pivots, etc.
There are three passes: 1. Find await's and trace upward. 2. Find loops found in #1, and flood downward 3. Find break/continue found in #2, and trace upward
icedWalkAst
Walk the AST looking for taming. Mark a node as with iced flags if any of its children are iced, but don't cross scope boundary when considering the children.
The paremeter p
is the parent await
. All nodes beneath the
first await
in a function scope should point to its highest
parent await
. This is so in the case of nested await
s,
they're really pulled out and run in sequence as the level of the
topmost await.
The parameter o
is a global object, passed through all without
copies, to push information up and down the AST. This parameter is
used with subfields:
o.foundAutocb -- on if the parent function has an autocb
o.foundDefer -- on if defer() was found anywhere in the AST
o.foundAwait -- on if await... was found anywhere in the AST
o.foundAwaitFunc -- on if await found in this func
o.currFunc -- the current func we're in
o.foundArguments -- on if we found reference to 'arguments'
icedWalkAst : (p, o) ->
@icedParentAwait = p
@icedHasAutocbFlag = o.foundAutocb
for child in @flattenChildren()
@icedNodeFlag = true if child.icedWalkAst p, o
@icedNodeFlag
icedWalkAstLoops Walk all loops that are marked as "iced" and mark their children as being children in a iced loop. They'll need more translations than other nodes. Eventually, "switch" statements might also be "loops"
icedWalkAstLoops : (flood) ->
flood = true if @isLoop() and @icedNodeFlag
flood = false if @isLoop() and not @icedNodeFlag
@icedLoopFlag = flood
for child in @flattenChildren()
@icedLoopFlag = true if child.icedWalkAstLoops flood
@icedLoopFlag
icedWalkCpsPivots A node is marked as a "cpsPivot" of it is (a) a 'iced' node, (b) a jump node in a iced while loop; or (c) an ancestor of (a) or (b).
icedWalkCpsPivots : ->
@icedCpsPivotFlag = true if @icedNodeFlag or (@icedLoopFlag and @icedIsJump())
for child in @flattenChildren()
@icedCpsPivotFlag = true if child.icedWalkCpsPivots()
@icedCpsPivotFlag
icedClearAutocbFlags : ->
@icedHasAutocbFlag = false
@traverseChildren false, (node) ->
node.icedHasAutocbFlag = false
true
A generic iced AST rotation is just to push down to its children
icedCpsRotate: ->
for child in @flattenChildren()
child.icedCpsRotate()
this
icedIsCpsPivot : -> @icedCpsPivotFlag
icedNestContinuationBlock : (b) -> @icedContinuationBlock = b
icedHasContinuation : -> (!!@icedContinuationBlock)
icedCallContinuation : -> @icedCallContinuationFlag = true
icedWrapContinuation : NO
icedIsJump : NO
icedUnwrap: (e) ->
if e.icedHasContinuation() and @icedHasContinuation()
this
else
if @icedHasContinuation()
e.icedContinuationBlock = @icedContinuationBlock
e
icedStatementAssertion : () ->
@error "await'ed statements can't act as expressions" if @icedIsCpsPivot()
End iced additions...
Default implementations of the common node properties and methods. Nodes will override these with custom logic, if needed.
children: []
isStatement : NO
jumps : NO
isComplex : YES
isChainable : NO
isAssignable : NO
isLoop : NO
unwrap : THIS
unfoldSoak : NO
Is this node used to assign a certain variable?
assigns: NO
For this node and all descendents, set the location data to locationData
if the location data is not already set.
updateLocationDataIfMissing: (locationData) ->
return this if @locationData
@locationData = locationData
@eachChild (child) ->
child.updateLocationDataIfMissing locationData
Throw a SyntaxError associated with this node's location.
error: (message) ->
throwSyntaxError message, @locationData
makeCode: (code) ->
new CodeFragment this, code
wrapInBraces: (fragments) ->
[].concat @makeCode('('), fragments, @makeCode(')')
fragmentsList
is an array of arrays of fragments. Each array in fragmentsList will be
concatonated together, with joinStr
added in between each, to produce a final flat array
of fragments.
joinFragmentArrays: (fragmentsList, joinStr) ->
answer = []
for fragments,i in fragmentsList
if i then answer.push @makeCode joinStr
answer = answer.concat fragments
answer
The block is the list of expressions that forms the body of an
indented block of code -- the implementation of a function, a clause in an
if
, switch
, or try
, and so on...
exports.Block = class Block extends Base
constructor: (nodes) ->
super()
@expressions = compact flatten nodes or []
children: ['expressions']
Tack an expression on to the end of this expression list.
push: (node) ->
@expressions.push node
this
Remove and return the last expression of this expression list.
pop: ->
@expressions.pop()
Add an expression at the beginning of this expression list.
unshift: (node) ->
@expressions.unshift node
this
If this Block consists of just a single node, unwrap it by pulling it back out.
unwrap: ->
if @expressions.length is 1 then @icedUnwrap @expressions[0] else this
Is this an empty block of code?
isEmpty: ->
not @expressions.length
isStatement: (o) ->
for exp in @expressions when exp.isStatement o
return yes
no
jumps: (o) ->
for exp in @expressions
return exp if exp.jumps o
A Block node does not return its entire body, rather it ensures that the final expression is returned.
makeReturn: (res) ->
len = @expressions.length
foundReturn = false
while len--
expr = @expressions[len]
if expr not instanceof Comment
@expressions[len] = expr.makeReturn res
if expr instanceof Return and
not expr.expression and not expr.icedHasAutocbFlag
@expressions.splice(len, 1)
foundReturn = true
else if not (expr instanceof If) or expr.elseBody
foundReturn = true
break
if @icedHasAutocbFlag and not @icedNodeFlag and not foundReturn
@expressions.push(new Return null, true)
this
A Block is the only node that can serve as the root.
compileToFragments: (o = {}, level) ->
if o.scope then super o, level else @compileRoot o
Compile all expressions within the Block body. If we need to return the result, and it's an expression, simply return it. If it's a statement, ask the statement to do so.
compileNode: (o) ->
@tab = o.indent
top = o.level is LEVEL_TOP
compiledNodes = []
for node, index in @expressions
node = node.unwrapAll()
node = (node.unfoldSoak(o) or node)
if node instanceof Block
This is a nested block. We don't do anything special here like enclose it in a new scope; we just compile the statements in this block along with our own
compiledNodes.push node.compileNode o
else if top
node.front = true
fragments = node.compileToFragments o
unless node.isStatement o
fragments.unshift @makeCode "#{@tab}"
fragments.push @makeCode ";"
compiledNodes.push fragments
else
compiledNodes.push node.compileToFragments o, LEVEL_LIST
if top
if @spaced
return [].concat @joinFragmentArrays(compiledNodes, '\n\n'), @makeCode("\n")
else
return @joinFragmentArrays(compiledNodes, '\n')
if compiledNodes.length
answer = @joinFragmentArrays(compiledNodes, ', ')
else
answer = [@makeCode "void 0"]
if compiledNodes.length > 1 and o.level >= LEVEL_LIST then @wrapInBraces answer else answer
If we happen to be the top-level Block, wrap everything in a safety closure, unless requested not to. It would be better not to generate them in the first place, but for now, clean up obvious double-parentheses.
compileRoot: (o) ->
o.indent = if o.bare then '' else TAB
o.level = LEVEL_TOP
@spaced = yes
o.scope = new Scope null, this, null
Mark given local variables in the root scope as parameters so they don't end up being declared on this block.
o.scope.parameter name for name in o.locals or []
prelude = []
unless o.bare
preludeExps = for exp, i in @expressions
break unless exp.unwrap() instanceof Comment
exp
rest = @expressions[preludeExps.length...]
@expressions = preludeExps
if preludeExps.length
prelude = @compileNode merge(o, indent: '')
prelude.push @makeCode "\n"
@expressions = rest
fragments = @compileWithDeclarations o
return fragments if o.bare
[].concat prelude, @makeCode("(function() {\n"), fragments, @makeCode("\n}).call(this);\n")
Compile the expressions body for the contents of a function, with declarations of all inner variables pushed up to the top.
compileWithDeclarations: (o) ->
fragments = []
post = []
for exp, i in @expressions
exp = exp.unwrap()
break unless exp instanceof Comment or exp instanceof Literal
o = merge(o, level: LEVEL_TOP)
if i
rest = @expressions.splice i, 9e9
[spaced, @spaced] = [@spaced, no]
[fragments, @spaced] = [@compileNode(o), spaced]
@expressions = rest
post = @compileNode o
{scope} = o
if scope.expressions is this
declars = o.scope.hasDeclarations()
assigns = scope.hasAssignments
if declars or assigns
fragments.push @makeCode '\n' if i
fragments.push @makeCode "#{@tab}var "
if declars
fragments.push @makeCode scope.declaredVariables().join(', ')
if assigns
fragments.push @makeCode ",\n#{@tab + TAB}" if declars
fragments.push @makeCode scope.assignedVariables().join(",\n#{@tab + TAB}")
fragments.push @makeCode ";\n#{if @spaced then '\n' else ''}"
else if fragments.length and post.length
fragments.push @makeCode "\n"
fragments.concat post
Wrap up the given nodes as a Block, unless it already happens to be one.
@wrap: (nodes) ->
return nodes[0] if nodes.length is 1 and nodes[0] instanceof Block
new Block nodes
Start iced additions
When returning from a block, we need to maybe call into a continuation. This call will thread that "return / call-continuation" through this block.
icedThreadReturn: (call) ->
call = call || new IcedTailCall
len = @expressions.length
while len--
expr = @expressions[len]
If the last expression in the block is either a bonafide statement or if it's going to be pivoted, then don't thread the return value through the IcedTailCall, just bolt it onto the end.
if expr.isStatement()
break
In this case, we have a value that we're going to return out of the block, so apply the IcedTamilCall onto the value
if expr not instanceof Comment and expr not instanceof Return
call.assignValue expr
@expressions[len] = call
return
if nothing was found, just push the call on
@expressions.push call
Optimization! Blocks typically don't need their own cpsCascading. This saves wasted code.
icedCompileCps : (o) ->
@icedGotCpsSplitFlag = true
if @expressions.length > 1
super o
else
@compileNode o
icedCpsRotate -- This is the key abstract syntax tree rotation of the CPS translation. Take a block with a bunch of sequential statements and "pivot" the AST on the first available pivot. The expressions on the LHS of the pivot stay where the are. The expressions on the RHS of the pivot become the pivot's continuation. And the process is applied recursively.
icedCpsRotate : ->
pivot = null
Go ahead an look for a pivot
for e,i in @expressions
if e.icedIsCpsPivot()
pivot = e
The pivot value needs to call the currently active continuation after it's all done. For things like if..else.. this does something interesting and pushes the continuation down both branches. Note that it's convenient to do this before anything is rotated.
pivot.icedCallContinuation()
Recursively rotate the children, in depth-first order.
e.icedCpsRotate()
If we've found a pivot, then we break out of here, and then handle the rest of these children
break if pivot
If there's no pivot, then the above should be as in the base class, and it's safe to return out of here.
We find a pivot if this node has taming, and it's not an Await itself.
return this unless pivot
We should never have a continuation here, even though we rotated this guy above. This is true because: 1. The Pivot must be a statement.... 2. If pivot is a statement, then the continuation will be in the grandchild Block node
if pivot.icedContinuationBlock
throw SyntaxError "unexpected continuation block in node"
These are the expressions on the RHS of the pivot split
rest = @expressions.slice(i+1)
Leave the pivot in the list of expressions
@expressions = @expressions.slice(0,i+1)
If there are elements in rest, then we need to nest a continuation block
if rest.length
child = new Block rest
pivot.icedNestContinuationBlock child
Pass our node bits onto our new children
for e in rest
child.icedNodeFlag = true if e.icedNodeFlag
child.icedLoopFlag = true if e.icedLoopFlag
child.icedCpsPivotFlag = true if e.icedCpsPivotFlag
child.icedHasAutocbFlag = true if e.icedHasAutocbFlag
now recursive apply the transformation to the new child, this being especially important in blocks that have multiple awaits on the same level
child.icedCpsRotate()
return this for chaining
this
Paste in a require or inline code, depending on the strategy requested
icedAddRuntime : (foundDefer, foundAwait) ->
index = 0
while (node = @expressions[index]) and node instanceof Comment or
node instanceof Value and node.isString()
index++
@expressions.splice index, 0, (new IcedRuntime foundDefer, foundAwait)
Perform all steps of the Iced transform
icedTransform : (opts) ->
we need to do at least 1 walk -- do the most important walk first
obj = {}
@icedWalkAst null, obj
Add a runtime if necessary, but don't add a runtime for the REPL. For some reason, even outputting an empty runtime doesn't work as far as the REPL is concerned.
@icedAddRuntime obj.foundDefer, obj.foundAwait unless opts?.repl
short-circuit here for optimization. If we didn't find await then no need to iced anything in this AST
if obj.foundAwait
@icedWalkAstLoops false
@icedWalkCpsPivots()
@icedCpsRotate()
this
Like unwrap, but will return if not a single
icedGetSingle : ->
if @expressions.length is 1 then @expressions[0] else null
end iced additions
Literals are static values that can be passed through directly into
JavaScript without translation, such as: strings, numbers,
true
, false
, null
...
exports.Literal = class Literal extends Base
constructor: (@value) ->
super()
makeReturn: ->
if @isStatement() then this else super
isAssignable: ->
IDENTIFIER.test @value
isStatement: ->
@value in ['break', 'continue', 'debugger']
isComplex: NO
assigns: (name) ->
name is @value
jumps: (o) ->
return this if @value is 'break' and not (o?.loop or o?.block)
return this if @value is 'continue' and not o?.loop
compileNode: (o) ->
Don't tun this code through @makeCode below....
return @icedCompileIced o if @icedLoopFlag and @icedIsJump()
code = if @value is 'this'
if o.scope.method?.bound then o.scope.method.context else @value
else if @value.reserved
"\"#{@value}\""
else
@value
answer = if @isStatement() then "#{@tab}#{code};" else code
[@makeCode answer]
toString: ->
' "' + @value + '"'
icedWalkAst : (parent, o) ->
if @value is 'arguments' and o.foundAwaitFunc
o.foundArguments = true
@value = "_arguments"
false
icedIsJump : -> @isStatement()
icedCompileIced: (o) ->
d =
'continue' : iced.const.c_while
'break' : iced.const.b_while
l = d[@value]
func = new Value new Literal l
call = new Call func, []
return call.compileNode o
class exports.Undefined extends Base
isAssignable: NO
isComplex: NO
compileNode: (o) ->
[@makeCode if o.level >= LEVEL_ACCESS then '(void 0)' else 'void 0']
class exports.Null extends Base
isAssignable: NO
isComplex: NO
compileNode: -> [@makeCode "null"]
class exports.Bool extends Base
isAssignable: NO
isComplex: NO
compileNode: -> [@makeCode @val]
constructor: (@val) ->
exports.Return = class Return extends Base
constructor: (expr, auto) ->
super()
@icedHasAutocbFlag = auto
@expression = expr if expr and not expr.unwrap().isUndefined
children: ['expression']
isStatement: YES
makeReturn: THIS
jumps: THIS
compileToFragments: (o, level) ->
expr = @expression?.makeReturn()
if expr and expr not instanceof Return then expr.compileToFragments o, level else super o, level
compileNode: (o) ->
return @icedCompileIced o if @icedHasAutocbFlag
answer = []
TODO: If we call expression.compile() here twice, we'll sometimes get back different results!
answer.push @makeCode @tab + "return#{if @expression then " " else ""}"
if @expression
answer = answer.concat @expression.compileToFragments o, LEVEL_PAREN
answer.push @makeCode ";"
return answer
icedCompileIced : (o) ->
cb = new Value new Literal iced.const.autocb
args = if @expression then [ @expression ] else []
call = new Call cb, args
ret = new Literal "return"
block = new Block [ call, ret];
block.compileNode o
exports.Value = class Value extends Base
constructor: (base, props, tag) ->
super()
return base if not props and base instanceof Value
@base = base
@properties = props or []
@[tag] = true if tag
return this
children: ['base', 'properties']
Minor iced addition for convenience
copy : -> new Value @base, @properties
Add a property (or properties ) Access
to the list.
add: (props) ->
@properties = @properties.concat props
this
hasProperties: ->
!!@properties.length
Some boolean checks for the benefit of other nodes.
isArray : -> not @properties.length and @base instanceof Arr
isComplex : -> @hasProperties() or @base.isComplex()
isAssignable : -> @hasProperties() or @base.isAssignable()
isSimpleNumber : -> @base instanceof Literal and SIMPLENUM.test @base.value
isString : -> @base instanceof Literal and IS_STRING.test @base.value
isAtomic : ->
for node in @properties.concat @base
return no if node.soak or node instanceof Call
yes
isStatement : (o) -> not @properties.length and @base.isStatement o
assigns : (name) -> not @properties.length and @base.assigns name
jumps : (o) -> not @properties.length and @base.jumps o
isObject: (onlyGenerated) ->
return no if @properties.length
(@base instanceof Obj) and (not onlyGenerated or @base.generated)
isSplice: ->
last(@properties) instanceof Slice
The value can be unwrapped as its inner node, if there are no attached properties.
unwrap: ->
if @properties.length then this else @base
A reference has base part (this
value) and name part.
We cache them separately for compiling complex expressions.
a()[b()] ?= c
-> (_base = a())[_name = b()] ? _base[_name] = c
cacheReference: (o) ->
name = last @properties
if @properties.length < 2 and not @base.isComplex() and not name?.isComplex()
return [this, this] # `a` `a.b`
base = new Value @base, @properties[...-1]
if base.isComplex() # `a().b`
bref = new Literal o.scope.freeVariable 'base'
base = new Value new Parens new Assign bref, base
return [base, bref] unless name # `a()`
if name.isComplex() # `a[b()]`
nref = new Literal o.scope.freeVariable 'name'
name = new Index new Assign nref, name.index
nref = new Index nref
[base.add(name), new Value(bref or base.base, [nref or name])]
We compile a value to JavaScript by compiling and joining each property.
Things get much more interesting if the chain of properties has soak
operators ?.
interspersed. Then we have to take care not to accidentally
evaluate anything twice when building the soak chain.
compileNode: (o) ->
@base.front = @front
props = @properties
fragments = @base.compileToFragments o, (if props.length then LEVEL_ACCESS else null)
if (@base instanceof Parens or props.length) and SIMPLENUM.test fragmentsToText fragments
fragments.push @makeCode '.'
for prop in props
fragments.push (prop.compileToFragments o)...
fragments
Unfold a soak into an If
: a?.b
-> a.b if a?
unfoldSoak: (o) ->
@unfoldedSoak ?= do =>
if ifn = @base.unfoldSoak o
ifn.body.properties.push @properties...
return ifn
for prop, i in @properties when prop.soak
prop.soak = off
fst = new Value @base, @properties[...i]
snd = new Value @base, @properties[i..]
if fst.isComplex()
ref = new Literal o.scope.freeVariable 'ref'
fst = new Parens new Assign ref, fst
snd.base = ref
return new If new Existence(fst), snd, soak: on
no
If this value is being used as a slot for the purposes of a defer then export it here
icedToSlot : (i) ->
return @base.icedToSlot i if @base instanceof Obj
sufffix = null
if @properties and @properties.length
suffix = @properties.pop()
return new Slot i, this, suffix
icedToSlotAccess : () ->
See bug #78 in the ICS repository. We're concerned about this case:
await foo defer { @x }
In this situation, @x
will be represented as a value with the this
property set to true
, and properties[0] will have the name of the
dictionary key that's needed (already as an Access
instance)
if @this then @properties[0]
else new Access @
CoffeeScript passes through block comments as JavaScript block comments at the same position.
exports.Comment = class Comment extends Base
constructor: (@comment) ->
super()
isStatement: YES
makeReturn: THIS
compileNode: (o, level) ->
code = "/*#{multident @comment, @tab}#{if '\n' in @comment then "\n#{@tab}" else ''}*/"
code = o.indent + code if (level or o.level) is LEVEL_TOP
[@makeCode("\n"), @makeCode(code)]
Node for a function invocation. Takes care of converting super()
calls into
calls against the prototype's function of the same name.
exports.Call = class Call extends Base
constructor: (variable, @args = [], @soak) ->
super()
@isNew = false
@isSuper = variable is 'super'
@variable = if @isSuper then null else variable
children: ['variable', 'args']
Tag this invocation as creating a new instance.
newInstance: ->
base = @variable?.base or @variable
if base instanceof Call and not base.isNew
base.newInstance()
else
@isNew = true
this
Grab the reference to the superclass's implementation of the current method.
superReference: (o) ->
method = o.scope.namedMethod()
if method?.klass
accesses = [new Access(new Literal '__super__')]
accesses.push new Access new Literal 'constructor' if method.static
accesses.push new Access new Literal method.name
(new Value (new Literal method.klass), accesses).compile o
else if method?.ctor
"#{method.name}.__super__.constructor"
else
@error 'cannot call super outside of an instance method.'
The appropriate this
value for a super
call.
superThis : (o) ->
if o.scope.icedgen then "_this"
else
method = o.scope.method
(method and not method.klass and method.context) or "this"
Soaked chained invocations unfold into if/else ternary structures.
unfoldSoak: (o) ->
if @soak
if @variable
return ifn if ifn = unfoldSoak o, this, 'variable'
[left, rite] = new Value(@variable).cacheReference o
else
left = new Literal @superReference o
rite = new Value left
rite = new Call rite, @args
rite.isNew = @isNew
left = new Literal "typeof #{ left.compile o } === \"function\""
return new If left, new Value(rite), soak: yes
call = this
list = []
loop
if call.variable instanceof Call
list.push call
call = call.variable
continue
break unless call.variable instanceof Value
list.push call
break unless (call = call.variable.base) instanceof Call
for call in list.reverse()
if ifn
if call.variable instanceof Call
call.variable = ifn
else
call.variable.base = ifn
ifn = unfoldSoak o, call, 'variable'
ifn
Compile a vanilla function call.
compileNode: (o) ->
@variable?.front = @front
compiledArray = Splat.compileSplattedArray o, @args, true
if compiledArray.length
return @compileSplat o, compiledArray
compiledArgs = []
for arg, argIndex in @args
arg.icedStatementAssertion()
if argIndex then compiledArgs.push @makeCode ", "
compiledArgs.push (arg.compileToFragments o, LEVEL_LIST)...
fragments = []
if @isSuper
preface = @superReference(o) + ".call(#{@superThis(o)}"
if compiledArgs.length then preface += ", "
fragments.push @makeCode preface
else
if @isNew then fragments.push @makeCode 'new '
fragments.push @variable.compileToFragments(o, LEVEL_ACCESS)...
fragments.push @makeCode "("
fragments.push compiledArgs...
fragments.push @makeCode ")"
fragments
If you call a function with a splat, it's converted into a JavaScript
.apply()
call to allow an array of arguments to be passed.
If it's a constructor, then things get real tricky. We have to inject an
inner constructor in order to be able to pass the varargs.
splatArgs is an array of CodeFragments to put into the 'apply'.
compileSplat: (o, splatArgs) ->
if @isSuper
return [].concat @makeCode("#{ @superReference o }.apply(#{@superThis(o)}, "),
splatArgs, @makeCode(")")
if @isNew
idt = @tab + TAB
return [].concat @makeCode("""
(function(func, args, ctor) {
#{idt}ctor.prototype = func.prototype;
#{idt}var child = new ctor, result = func.apply(child, args);
#{idt}return Object(result) === result ? result : child;
#{@tab}})("""),
(@variable.compileToFragments o, LEVEL_LIST),
@makeCode(", "), splatArgs, @makeCode(", function(){})")
answer = []
base = new Value @variable
if (name = base.properties.pop()) and base.isComplex()
ref = o.scope.freeVariable 'ref'
answer = answer.concat @makeCode("(#{ref} = "),
(base.compileToFragments o, LEVEL_LIST),
@makeCode(")"),
name.compileToFragments(o)
else
fun = base.compileToFragments o, LEVEL_ACCESS
fun = @wrapInBraces fun if SIMPLENUM.test fragmentsToText fun
if name
ref = fragmentsToText fun
fun.push (name.compileToFragments o)...
else
ref = 'null'
answer = answer.concat fun
answer = answer.concat @makeCode(".apply(#{ref}, "), splatArgs, @makeCode(")")
Node to extend an object's prototype with an ancestor object.
After goog.inherits
from the
Closure Library.
exports.Extends = class Extends extends Base
constructor: (@child, @parent) ->
super()
children: ['child', 'parent']
Hooks one constructor into another's prototype chain.
compileToFragments: (o) ->
new Call(new Value(new Literal utility 'extends'), [@child, @parent]).compileToFragments o
A .
access into a property of a value, or the ::
shorthand for
an access into the object's prototype.
exports.Access = class Access extends Base
constructor: (@name, tag) ->
super()
@name.asKey = yes
@soak = tag is 'soak'
children: ['name']
compileToFragments: (o) ->
name = @name.compileToFragments o
if (IDENTIFIER.test fragmentsToText name) or @name instanceof Defer
name.unshift @makeCode "."
else
name.unshift @makeCode "["
name.push @makeCode "]"
name
isComplex: NO
exports.Index = class Index extends Base
constructor: (@index) ->
super()
children: ['index']
compileToFragments: (o) ->
[].concat @makeCode("["), @index.compileToFragments(o, LEVEL_PAREN), @makeCode("]")
isComplex: ->
@index.isComplex()
A range literal. Ranges can be used to extract portions (slices) of arrays, to specify a range for comprehensions, or as a value, to be expanded into the corresponding array of integers at runtime.
exports.Range = class Range extends Base
children: ['from', 'to']
constructor: (@from, @to, tag) ->
super()
@exclusive = tag is 'exclusive'
@equals = if @exclusive then '' else '='
Compiles the range's source variables -- where it starts and where it ends. But only if they need to be cached to avoid double evaluation.
compileVariables: (o) ->
o = merge o, top: true
[@fromC, @fromVar] = @cacheToCodeFragments @from.cache o, LEVEL_LIST
[@toC, @toVar] = @cacheToCodeFragments @to.cache o, LEVEL_LIST
[@step, @stepVar] = @cacheToCodeFragments step.cache o, LEVEL_LIST if step = del o, 'step'
[@fromNum, @toNum] = [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)]
@stepNum = @stepVar.match(SIMPLENUM) if @stepVar
When compiled normally, the range returns the contents of the for loop needed to iterate over the values in the range. Used by comprehensions.
compileNode: (o) ->
@compileVariables o unless @fromVar
return @compileArray(o) unless o.index
Set up endpoints.
known = @fromNum and @toNum
idx = del o, 'index'
idxName = del o, 'name'
namedIndex = idxName and idxName isnt idx
varPart = "#{idx} = #{@fromC}"
varPart += ", #{@toC}" if @toC isnt @toVar
varPart += ", #{@step}" if @step isnt @stepVar
[lt, gt] = ["#{idx} <#{@equals}", "#{idx} >#{@equals}"]
Generate the condition.
condPart = if @stepNum
if +@stepNum > 0 then "#{lt} #{@toVar}" else "#{gt} #{@toVar}"
else if known
[from, to] = [+@fromNum, +@toNum]
if from <= to then "#{lt} #{to}" else "#{gt} #{to}"
else
cond = if @stepVar then "#{@stepVar} > 0" else "#{@fromVar} <= #{@toVar}"
"#{cond} ? #{lt} #{@toVar} : #{gt} #{@toVar}"
Generate the step.
stepPart = if @stepVar
"#{idx} += #{@stepVar}"
else if known
if namedIndex
if from <= to then "++#{idx}" else "--#{idx}"
else
if from <= to then "#{idx}++" else "#{idx}--"
else
if namedIndex
"#{cond} ? ++#{idx} : --#{idx}"
else
"#{cond} ? #{idx}++ : #{idx}--"
varPart = "#{idxName} = #{varPart}" if namedIndex
stepPart = "#{idxName} = #{stepPart}" if namedIndex
The final loop body.
[@makeCode "#{varPart}; #{condPart}; #{stepPart}"]
When used as a value, expand the range into the equivalent array.
compileArray: (o) ->
if @fromNum and @toNum and Math.abs(@fromNum - @toNum) <= 20
range = [+@fromNum..+@toNum]
range.pop() if @exclusive
return [@makeCode "[#{ range.join(', ') }]"]
idt = @tab + TAB
i = o.scope.freeVariable 'i'
result = o.scope.freeVariable 'results'
pre = "\n#{idt}#{result} = [];"
if @fromNum and @toNum
o.index = i
body = fragmentsToText @compileNode o
else
vars = "#{i} = #{@fromC}" + if @toC isnt @toVar then ", #{@toC}" else ''
cond = "#{@fromVar} <= #{@toVar}"
body = "var #{vars}; #{cond} ? #{i} <#{@equals} #{@toVar} : #{i} >#{@equals} #{@toVar}; #{cond} ? #{i}++ : #{i}--"
post = "{ #{result}.push(#{i}); }\n#{idt}return #{result};\n#{o.indent}"
hasArgs = (node) -> node?.contains (n) -> n instanceof Literal and n.value is 'arguments' and not n.asKey
args = ', arguments' if hasArgs(@from) or hasArgs(@to)
[@makeCode "(function() {#{pre}\n#{idt}for (#{body})#{post}}).apply(this#{args ? ''})"]
An array slice literal. Unlike JavaScript's Array#slice
, the second parameter
specifies the index of the end of the slice, just as the first parameter
is the index of the beginning.
exports.Slice = class Slice extends Base
children: ['range']
constructor: (@range) ->
super()
We have to be careful when trying to slice through the end of the array,
9e9
is used because not all implementations respect undefined
or 1/0
.
9e9
should be safe because 9e9
> 2**32
, the max array length.
compileNode: (o) ->
{to, from} = @range
fromCompiled = from and from.compileToFragments(o, LEVEL_PAREN) or [@makeCode '0']
TODO: jwalton - move this into the 'if'?
if to
compiled = to.compileToFragments o, LEVEL_PAREN
compiledText = fragmentsToText compiled
if not (not @range.exclusive and +compiledText is -1)
toStr = ', ' + if @range.exclusive
compiledText
else if SIMPLENUM.test compiledText
"#{+compiledText + 1}"
else
compiled = to.compileToFragments o, LEVEL_ACCESS
"+#{fragmentsToText compiled} + 1 || 9e9"
[@makeCode ".slice(#{ fragmentsToText fromCompiled }#{ toStr or '' })"]
exports.Obj = class Obj extends Base
constructor: (props, @generated = false) ->
@objects = @properties = props or []
super()
children: ['properties']
compileNode: (o) ->
props = @properties
return [@makeCode(if @front then '({})' else '{}')] unless props.length
if @generated
for node in props when node instanceof Value
node.error 'cannot have an implicit value in an implicit object'
idt = o.indent += TAB
lastNoncom = @lastNonComment @properties
answer = []
for prop, i in props
join = if i is props.length - 1
''
else if prop is lastNoncom or prop instanceof Comment
'\n'
else
',\n'
indent = if prop instanceof Comment then '' else idt
if prop instanceof Assign and prop.variable instanceof Value and prop.variable.hasProperties()
prop.variable.error 'Invalid object key'
if prop instanceof Value and prop.this
prop = new Assign prop.properties[0].name, prop, 'object'
if prop not instanceof Comment
if prop not instanceof Assign
prop = new Assign prop, prop, 'object'
(prop.variable.base or prop.variable).asKey = yes
if indent then answer.push @makeCode indent
answer.push prop.compileToFragments(o, LEVEL_TOP)...
if join then answer.push @makeCode join
answer.unshift @makeCode "{#{ props.length and '\n' }"
answer.push @makeCode "#{ props.length and '\n' + @tab }}"
if @front then @wrapInBraces answer else answer
assigns: (name) ->
for prop in @properties when prop.assigns name then return yes
no
icedToSlot : (i) ->
for prop in @properties
if prop instanceof Assign
(prop.value.icedToSlot i).addAccess prop.variable.icedToSlotAccess()
else if prop instanceof Value
access = prop.icedToSlotAccess()
(prop.icedToSlot i).addAccess access
exports.Arr = class Arr extends Base
constructor: (objs) ->
@objects = objs or []
super()
children: ['objects']
compileNode: (o) ->
return [@makeCode '[]'] unless @objects.length
o.indent += TAB
answer = Splat.compileSplattedArray o, @objects
return answer if answer.length
answer = []
compiledObjs = (obj.compileToFragments o, LEVEL_LIST for obj in @objects)
for fragments, index in compiledObjs
if index
answer.push @makeCode ", "
answer.push fragments...
if fragmentsToText(answer).indexOf('\n') >= 0
answer.unshift @makeCode "[\n#{o.indent}"
answer.push @makeCode "\n#{@tab}]"
else
answer.unshift @makeCode "["
answer.push @makeCode "]"
answer
assigns: (name) ->
for obj in @objects when obj.assigns name then return yes
no
The CoffeeScript class definition. Initialize a Class with its name, an optional superclass, and a list of prototype property assignments.
exports.Class = class Class extends Base
constructor: (@variable, @parent, @body = new Block) ->
super()
@boundFuncs = []
@body.classBody = yes
children: ['variable', 'parent', 'body']
Figure out the appropriate name for the constructor function of this class.
determineName: ->
return null unless @variable
decl = if tail = last @variable.properties
tail instanceof Access and tail.name.value
else
@variable.base.value
if decl in STRICT_PROSCRIBED
@variable.error "class variable name may not be #{decl}"
decl and= IDENTIFIER.test(decl) and decl
For all this
-references and bound functions in the class definition,
this
is the Class being constructed.
setContext: (name) ->
@body.traverseChildren false, (node) ->
return false if node.classBody
if node instanceof Literal and node.value is 'this'
node.value = name
else if node instanceof Code
node.klass = name
node.context = name if node.bound
Ensure that all functions bound to the instance are proxied in the constructor.
addBoundFunctions: (o) ->
for bvar in @boundFuncs
lhs = (new Value (new Literal "this"), [new Access bvar]).compile o
@ctor.body.unshift new Literal "#{lhs} = #{utility 'bind'}(#{lhs}, this)"
return
Merge the properties from a top-level object as prototypal properties on the class.
addProperties: (node, name, o) ->
props = node.base.properties[..]
exprs = while assign = props.shift()
if assign instanceof Assign
base = assign.variable.base
delete assign.context
func = assign.value
if base.value is 'constructor'
if @ctor
assign.error 'cannot define more than one constructor in a class'
if func.bound
assign.error 'cannot define a constructor as a bound function'
if func instanceof Code
assign = @ctor = func
else
@externalCtor = o.scope.freeVariable 'class'
assign = new Assign new Literal(@externalCtor), func
else
if assign.variable.this
func.static = yes
if func.bound
func.context = name
else
assign.variable = new Value(new Literal(name), [(new Access new Literal 'prototype'), new Access base])
if func instanceof Code and func.bound
@boundFuncs.push base
func.bound = no
assign
compact exprs
Walk the body of the class, looking for prototype properties to be converted.
walkBody: (name, o) ->
@traverseChildren false, (child) =>
cont = true
return false if child instanceof Class
if child instanceof Block
for node, i in exps = child.expressions
if node instanceof Value and node.isObject(true)
cont = false
exps[i] = @addProperties node, name, o
child.expressions = exps = flatten exps
cont and child not instanceof Class
use strict
(and other directives) must be the first expression statement(s)
of a function body. This method ensures the prologue is correctly positioned
above the constructor
.
hoistDirectivePrologue: ->
index = 0
{expressions} = @body
++index while (node = expressions[index]) and node instanceof Comment or
node instanceof Value and node.isString()
@directives = expressions.splice 0, index
Make sure that a constructor is defined for the class, and properly configured.
ensureConstructor: (name, o) ->
missing = not @ctor
@ctor or= new Code
@ctor.ctor = @ctor.name = name
@ctor.klass = null
@ctor.noReturn = yes
if missing
superCall = new Literal "#{name}.__super__.constructor.apply(this, arguments)" if @parent
superCall = new Literal "#{@externalCtor}.apply(this, arguments)" if @externalCtor
if superCall
ref = new Literal o.scope.freeVariable 'ref'
@ctor.body.unshift new Assign ref, superCall
@addBoundFunctions o
if superCall
@ctor.body.push ref
@ctor.body.makeReturn()
@body.expressions.unshift @ctor
else
@addBoundFunctions o
Instead of generating the JavaScript string directly, we build up the equivalent syntax tree and compile that, in pieces. You can see the constructor, property assignments, and inheritance getting built out below.
compileNode: (o) ->
decl = @determineName()
name = decl or '_Class'
name = "_#{name}" if name.reserved
lname = new Literal name
@hoistDirectivePrologue()
@setContext name
@walkBody name, o
@ensureConstructor name, o
@body.spaced = yes
@body.expressions.unshift @ctor unless @ctor instanceof Code
@body.expressions.push lname
@body.expressions.unshift @directives...
call = Closure.wrap @body
if @parent
@superClass = new Literal o.scope.freeVariable 'super', no
@body.expressions.unshift new Extends lname, @superClass
call.args.push @parent
params = call.variable.params or call.variable.base.params
params.push new Param @superClass
klass = new Parens call, yes
klass = new Assign @variable, klass if @variable
klass.compileToFragments o
The Assign is used to assign a local variable to value, or to set the property of an object -- including within object literals.
exports.Assign = class Assign extends Base
constructor: (@variable, @value, @context, options) ->
super()
@param = options and options.param
@subpattern = options and options.subpattern
forbidden = (name = @variable.unwrapAll().value) in STRICT_PROSCRIBED
if forbidden and @context isnt 'object'
@variable.error "variable name may not be \"#{name}\""
@icedlocal = options and options.icedlocal
children: ['variable', 'value']
isStatement: (o) ->
o?.level is LEVEL_TOP and @context? and "?" in @context
assigns: (name) ->
@[if @context is 'object' then 'value' else 'variable'].assigns name
unfoldSoak: (o) ->
unfoldSoak o, this, 'variable'
Compile an assignment, delegating to compilePatternMatch
or
compileSplice
if appropriate. Keep track of the name of the base object
we've been assigned to, for correct internal references. If the variable
has not been seen yet within the current scope, declare it.
compileNode: (o) ->
Start here for now, we're going to need a lot more of these.
@value.icedStatementAssertion()
if isValue = @variable instanceof Value
return @compilePatternMatch o if @variable.isArray() or @variable.isObject()
return @compileSplice o if @variable.isSplice()
return @compileConditional o if @context in ['||=', '&&=', '?=']
compiledName = @variable.compileToFragments o, LEVEL_LIST
name = fragmentsToText compiledName
unless @context
varBase = @variable.unwrapAll()
unless varBase.isAssignable()
@variable.error "\"#{@variable.compile o}\" cannot be assigned"
unless varBase.hasProperties?()
if @param or @icedlocal
o.scope.add name, 'var', @icedlocal
else
o.scope.find name
if @value instanceof Code and match = METHOD_DEF.exec name
@value.klass = match[1] if match[1]
@value.name = match[2] ? match[3] ? match[4] ? match[5]
val = @value.compileToFragments o, LEVEL_LIST
return (compiledName.concat @makeCode(": "), val) if @context is 'object'
answer = compiledName.concat @makeCode(" #{ @context or '=' } "), val
if o.level <= LEVEL_LIST then answer else @wrapInBraces answer
Brief implementation of recursive pattern matching, when assigning array or object literals to a value. Peeks at their properties to assign inner names. See the ECMAScript Harmony Wiki for details.
compilePatternMatch: (o) ->
top = o.level is LEVEL_TOP
{value} = this
{objects} = @variable.base
unless olen = objects.length
code = value.compileToFragments o
return if o.level >= LEVEL_OP then @wrapInBraces code else code
isObject = @variable.isObject()
if top and olen is 1 and (obj = objects[0]) not instanceof Splat
Unroll simplest cases: {v} = x
-> v = x.v
if obj instanceof Assign
{variable: {base: idx}, value: obj} = obj
else
idx = if isObject
if obj.this then obj.properties[0].name else obj
else
new Literal 0
acc = IDENTIFIER.test idx.unwrap().value or 0
value = new Value value
value.properties.push new (if acc then Access else Index) idx
if obj.unwrap().value in RESERVED
obj.error "assignment to a reserved word: #{obj.compile o}"
return new Assign(obj, value, null, param: @param).compileToFragments o, LEVEL_TOP
vvar = value.compileToFragments o, LEVEL_LIST
vvarText = fragmentsToText vvar
assigns = []
splat = false
Make vvar into a simple variable if it isn't already.
if not IDENTIFIER.test(vvarText) or @variable.assigns(vvarText)
assigns.push [@makeCode("#{ ref = o.scope.freeVariable 'ref' } = "), vvar...]
vvar = [@makeCode ref]
vvarText = ref
for obj, i in objects
A regular array pattern-match.
idx = i
if isObject
if obj instanceof Assign
A regular object pattern-match.
{variable: {base: idx}, value: obj} = obj
else
A shorthand {a, b, @c} = val
pattern-match.
if obj.base instanceof Parens
[obj, idx] = new Value(obj.unwrapAll()).cacheReference o
else
idx = if obj.this then obj.properties[0].name else obj
if not splat and obj instanceof Splat
name = obj.name.unwrap().value
obj = obj.unwrap()
val = "#{olen} <= #{vvarText}.length ? #{ utility 'slice' }.call(#{vvarText}, #{i}"
if rest = olen - i - 1
ivar = o.scope.freeVariable 'i'
val += ", #{ivar} = #{vvarText}.length - #{rest}) : (#{ivar} = #{i}, [])"
else
val += ") : []"
val = new Literal val
splat = "#{ivar}++"
else
name = obj.unwrap().value
if obj instanceof Splat
obj.error "multiple splats are disallowed in an assignment"
if typeof idx is 'number'
idx = new Literal splat or idx
acc = no
else
acc = isObject and IDENTIFIER.test idx.unwrap().value or 0
val = new Value new Literal(vvarText), [new (if acc then Access else Index) idx]
if name? and name in RESERVED
obj.error "assignment to a reserved word: #{obj.compile o}"
assigns.push new Assign(obj, val, null, param: @param, subpattern: yes).compileToFragments o, LEVEL_LIST
assigns.push vvar unless top or @subpattern
fragments = @joinFragmentArrays assigns, ', '
if o.level < LEVEL_LIST then fragments else @wrapInBraces fragments
When compiling a conditional assignment, take care to ensure that the operands are only evaluated once, even though we have to reference them more than once.
compileConditional: (o) ->
[left, right] = @variable.cacheReference o
Disallow conditional assignment of undefined variables.
if not left.properties.length and left.base instanceof Literal and
left.base.value != "this" and not o.scope.check left.base.value
@variable.error "the variable \"#{left.base.value}\" can't be assigned with #{@context} because it has not been declared before"
if "?" in @context then o.isExistentialEquals = true
new Op(@context[...-1], left, new Assign(right, @value, '=')).compileToFragments o
Compile the assignment from an array splice literal, using JavaScript's
Array#splice
method.
compileSplice: (o) ->
{range: {from, to, exclusive}} = @variable.properties.pop()
name = @variable.compile o
if from
[fromDecl, fromRef] = @cacheToCodeFragments from.cache o, LEVEL_OP
else
fromDecl = fromRef = '0'
if to
if from?.isSimpleNumber() and to.isSimpleNumber()
to = +to.compile(o) - +fromRef
to += 1 unless exclusive
else
to = to.compile(o, LEVEL_ACCESS) + ' - ' + fromRef
to += ' + 1' unless exclusive
else
to = "9e9"
[valDef, valRef] = @value.cache o, LEVEL_LIST
answer = [].concat @makeCode("[].splice.apply(#{name}, [#{fromDecl}, #{to}].concat("), valDef, @makeCode(")), "), valRef
if o.level > LEVEL_TOP then @wrapInBraces answer else answer
A function definition. This is the only node that creates a new Scope. When for the purposes of walking the contents of a function body, the Code has no children -- they're within the inner scope.
exports.Code = class Code extends Base
constructor: (params, body, tag) ->
super()
@params = params or []
@body = body or new Block
@icedgen = tag is 'icedgen'
@bound = tag is 'boundfunc' or @icedgen
@context = '_this' if @bound or @icedgen
@icedPassedDeferral = null
children: ['params', 'body']
isStatement: -> !!@ctor
jumps: NO
Compilation creates a new scope unless explicitly asked to share with the
outer scope. Handles splat parameters in the parameter list by peeking at
the JavaScript arguments
object. If the function is bound with the =>
arrow, generates a wrapper that saves the current value of this
through
a closure.
compileNode: (o) ->
o.scope = new Scope o.scope, @body, this
o.scope.shared = del(o, 'sharedScope') or @icedgen
o.scope.icedgen = @icedgen
o.indent += TAB
delete o.bare
delete o.isExistentialEquals
params = []
exprs = []
@eachParamName (name) -> # this step must be performed before the others
unless o.scope.check name then o.scope.parameter name
for param in @params when param.splat
for {name: p} in @params
if p.this then p = p.properties[0].name
if p.value then o.scope.add p.value, 'var', yes
splats = new Assign new Value(new Arr(p.asReference o for p in @params)),
new Value new Literal 'arguments'
break
for param in @params
if param.isComplex()
val = ref = param.asReference o
val = new Op '?', ref, param.value if param.value
exprs.push new Assign new Value(param.name), val, '=', param: yes
else
ref = param
if param.value
lit = new Literal ref.name.value + ' == null'
val = new Assign new Value(param.name), param.value, '='
exprs.push new If lit, val
params.push ref unless splats
wasEmpty = @body.isEmpty()
exprs.unshift splats if splats
@body.expressions.unshift exprs... if exprs.length
for p, i in params
params[i] = p.compileToFragments o
o.scope.parameter fragmentsToText params[i]
uniqs = []
@eachParamName (name, node) ->
node.error "multiple parameters named '#{name}'" if name in uniqs
uniqs.push name
wasEmpty = false if @icedHasAutocbFlag
@body.makeReturn() unless wasEmpty or @noReturn
if @bound
if o.scope.parent.method?.bound
@bound = @context = o.scope.parent.method.context
else if not @static
o.scope.parent.assign '_this', 'this'
idt = o.indent
code = 'function'
code += ' ' + @name if @ctor
code += '('
answer = [@makeCode(code)]
for p, i in params
if i then answer.push @makeCode ", "
answer.push p...
answer.push @makeCode ') {'
Augment @body with iced-specific features
@icedPatchBody o
answer = answer.concat(@makeCode("\n"), @body.compileWithDeclarations(o), @makeCode("\n#{@tab}")) unless @body.isEmpty()
answer.push @makeCode '}'
return [@makeCode(@tab), answer...] if @ctor
if @front or (o.level >= LEVEL_ACCESS) then @wrapInBraces answer else answer
eachParamName: (iterator) ->
param.eachName iterator for param in @params
Short-circuit traverseChildren
method to prevent it from crossing scope boundaries
unless crossScope
is true
.
traverseChildren: (crossScope, func) ->
super(crossScope, func) if crossScope
icedPatchBody : (o) ->
Some iced functions need to squirrel away the original arguments.
if @icedFoundArguments and @icedNodeFlag
o.scope.assign '_arguments', 'arguments'
if @icedNodeFlag and not @icedgen
Find the tamecb if possible, and do this before we update the scope, below...
@icedPassedDeferral = o.scope.freeVariable iced.const.passed_deferral
lhs = new Value new Literal @icedPassedDeferral
f = new Value new Literal iced.const.ns
f.add new Access new Value new Literal iced.const.findDeferral
rhs = new Call f, [ new Value new Literal 'arguments' ]
@body.unshift(new Assign lhs, rhs)
There are two important cases to consider in terms of autocb; In the case of an explicit call to return, we handle it in 'new Return' constructor. The subtler case is when control falls off the end of a function. But that's just the top-level continuation within the function. So we assign it to the autocb here. There's a slight scoping hack, to supply { icedlocal : yes }, which forces iced_k to be locally scoped. To have it global is a real disaster of subtle bugs. But wait, there's yet more!! Recall that icedgen functions share scope with their parent function. That means, they'll insert an 'iced_k' in the parent scope as a type == 'param' !! Meaning, it won't be output at the high-level function that contains them (since only 'var's) are output. Thus, we had to make a hack to scope.coffee to support this particular case.
if @icedNodeFlag and not @icedgen
r = if @icedHasAutocbFlag then iced.const.autocb else iced.const.k_noop
rhs = new Value new Literal r
lhs = new Value new Literal iced.const.k
@body.unshift(new Assign lhs, rhs, null, { icedlocal : yes } )
we are icing as a feature of all of our children. However, if we are iced, it's not the case that our parent is iced!
icedWalkAst : (parent, o) ->
@icedParentAwait = parent
fa_prev = o.foundAutocb
cf_prev = o.currFunc
fg_prev = o.foundArguments
faf_prev = o.foundAwaitFunc
o.foundAutocb = false
o.foundArguments = false
o.foundAwaitFunc = false
o.currFunc = @
for param in @params
if param.name instanceof Literal and param.name.value is iced.const.autocb
o.foundAutocb = true
break
@icedHasAutocbFlag = o.foundAutocb
super parent, o
@icedFoundArguments = o.foundArguments
o.foundAwaitFunc = faf_prev
o.foundArguments = fg_prev
o.foundAutocb = fa_prev
o.currFunc = cf_prev
false
icedWalkAstLoops : (flood) ->
@icedLoopFlag = true if super false
false
icedWalkCpsPivots: ->
super()
@icedCpsPivotFlag = false
icedTraceName : ->
parts = []
parts.push @klass if @klass
parts.push @name if @name
parts.join '.'
A parameter in a function definition. Beyond a typical Javascript parameter, these parameters can also attach themselves to the context of the function, as well as be a splat, gathering up a group of parameters into an array.
exports.Param = class Param extends Base
constructor: (@name, @value, @splat) ->
super()
if (name = @name.unwrapAll().value) in STRICT_PROSCRIBED
@name.error "parameter name \"#{name}\" is not allowed"
children: ['name', 'value']
compileToFragments: (o) ->
@name.compileToFragments o, LEVEL_LIST
asReference: (o) ->
return @reference if @reference
node = @name
if node.this
node = node.properties[0].name
if node.value.reserved
node = new Literal o.scope.freeVariable node.value
else if node.isComplex()
node = new Literal o.scope.freeVariable 'arg'
node = new Value node
node = new Splat node if @splat
@reference = node
isComplex: ->
@name.isComplex()
Iterates the name or names of a Param
.
In a sense, a destructured parameter represents multiple JS parameters. This
method allows to iterate them all.
The iterator
function will be called as iterator(name, node)
where
name
is the name of the parameter and node
is the AST node corresponding
to that name.
eachName: (iterator, name = @name)->
atParam = (obj) ->
node = obj.properties[0].name
iterator node.value, node unless node.value.reserved
foo
return iterator name.value, name if name instanceof Literal
@foo
return atParam name if name instanceof Value
for obj in name.objects
{foo:bar}
if obj instanceof Assign
@eachName iterator, obj.value.unwrap()
[xs...]
else if obj instanceof Splat
node = obj.name.unwrap()
iterator node.value, node
else if obj instanceof Value
[{a}]
if obj.isArray() or obj.isObject()
@eachName iterator, obj.base
{@foo}
else if obj.this
atParam obj
else iterator obj.base.value, obj.base
else
obj.error "illegal parameter #{obj.compile()}"
return
A splat, either as a parameter to a function, an argument to a call, or as part of a destructuring assignment.
exports.Splat = class Splat extends Base
children: ['name']
isAssignable: YES
constructor: (name) ->
super()
@name = if name.compile then name else new Literal name
assigns: (name) ->
@name.assigns name
compileToFragments: (o) ->
@name.compileToFragments o
unwrap: -> @name
Utility function that converts an arbitrary number of elements, mixed with splats, to a proper array.
@compileSplattedArray: (o, list, apply) ->
index = -1
continue while (node = list[++index]) and node not instanceof Splat
return [] if index >= list.length
if list.length is 1
node = list[0]
fragments = node.compileToFragments o, LEVEL_LIST
return fragments if apply
return [].concat node.makeCode("#{ utility 'slice' }.call("), fragments, node.makeCode(")")
args = list[index..]
for node, i in args
compiledNode = node.compileToFragments o, LEVEL_LIST
args[i] = if node instanceof Splat
then [].concat node.makeCode("#{ utility 'slice' }.call("), compiledNode, node.makeCode(")")
else [].concat node.makeCode("["), compiledNode, node.makeCode("]")
if index is 0
node = list[0]
concatPart = (node.joinFragmentArrays args[1..], ', ')
return args[0].concat node.makeCode(".concat("), concatPart, node.makeCode(")")
base = (node.compileToFragments o, LEVEL_LIST for node in list[...index])
base = list[0].joinFragmentArrays base, ', '
concatPart = list[index].joinFragmentArrays args, ', '
[].concat list[0].makeCode("["), base, list[index].makeCode("].concat("), concatPart, (last list).makeCode(")")
icedToSlot: (i) ->
new Slot(i, new Value(@name), null, true)
A while loop, the only sort of low-level loop exposed by CoffeeScript. From it, all other loops can be manufactured. Useful in cases where you need more flexibility or more speed than a comprehension can provide.
exports.While = class While extends Base
constructor: (condition, options) ->
@condition = if options?.invert then condition.invert() else condition
@guard = options?.guard
children: ['condition', 'guard', 'body']
isStatement: YES
isLoop : YES
makeReturn: (res) ->
if res
super
else
@returns = not @jumps loop: yes
this
addBody: (@body) ->
this
jumps: ->
{expressions} = @body
return no unless expressions.length
for node in expressions
return node if node.jumps loop: yes
no
The main difference from a JavaScript while is that the CoffeeScript while can be used as a part of a larger expression -- while loops may return an array containing the computed result of each iteration.
compileNode: (o) ->
@condition.icedStatementAssertion()
return @icedCompileIced o if @icedNodeFlag
o.indent += TAB
set = ''
{body} = this
if body.isEmpty()
body = @makeCode ''
else
if @returns
body.makeReturn rvar = o.scope.freeVariable 'results'
set = "#{@tab}#{rvar} = [];\n"
if @guard
if body.expressions.length > 1
body.expressions.unshift new If (new Parens @guard).invert(), new Literal "continue"
else
body = Block.wrap [new If @guard, body] if @guard
body = [].concat @makeCode("\n"), (body.compileToFragments o, LEVEL_TOP), @makeCode("\n#{@tab}")
answer = [].concat @makeCode(set + @tab + "while ("), @condition.compileToFragments(o, LEVEL_PAREN),
@makeCode(") {"), body, @makeCode("}")
if @returns
if @icedHasAutocbFlag
answer.push @makeCode "\n#{@tab}#{iced.const.autocb}(#{rvar});"
answer.push @makeCode "\n#{@tab}return;"
else
answer.push @makeCode "\n#{@tab}return #{rvar};"
answer
icedWrap : (d) ->
condition = d.condition
body = d.body
rvar = d.rvar
outStatements = []
if rvar
rvar_value = new Value new Literal rvar
Set up all of the IDs
top_id = new Value new Literal iced.const.t_while
k_id = new Value new Literal iced.const.k
k_param = new Param new Literal iced.const.k
Break will just call the parent continuation, but in some cases, there will be a return value, so then we have to pass that back out. Hence the split below:
break_id = new Value new Literal iced.const.b_while
if rvar
break_expr = new Call k_id, [ rvar_value ]
break_block = new Block [ break_expr ]
break_body = new Code [], break_block, 'icedgen'
break_assign = new Assign break_id, break_body, null, { icedlocal : yes }
else
break_assign = new Assign break_id, k_id, null, { icedlocal : yes }
The continue assignment is the increment at the end of the loop (if it's there), and also the recursive call back to the top.
continue_id = new Value new Literal iced.const.c_while
continue_block_inner = new Block [ new Call top_id, [ k_id ] ]
continue_block_inner.unshift d.step if d.step
continue_fn = new Code [], continue_block_inner
tramp = new Value new Literal iced.const.ns
tramp.add(new Access new Value new Literal iced.const.trampoline)
continue_block = new Block [ new Call tramp, [ continue_fn ] ]
continue_body = new Code [], continue_block, 'icedgen'
continue_assign = new Assign continue_id, continue_body, null, { icedlocal : yes }
Next is like continue, but it also squirrels away the return value, if required!
next_id = new Value new Literal iced.const.n_while
if rvar
next_arg = new Param new Literal iced.const.n_arg
f = rvar_value.copy()
f.add new Access new Value new Literal 'push'
call1 = new Call f, [ next_arg ]
call2 = new Call continue_id, []
next_block = new Block [ call1, call2 ]
next_body = new Code [ next_arg ], next_block, 'icedgen'
next_assign = new Assign next_id, next_body, null, { icedlocal : yes }
else
next_assign = new Assign next_id, continue_id
The whole body is wrapped in an if, with the positive condition being the loop, and the negative condition being the break out of the loop
cond = new If condition.invert(), new Block [ new Call break_id, [] ]
if d.guard
continue_block = new Block [ new Call continue_id, [] ]
guard_if = new If d.guard, body
guard_if.addElse continue_block
cond.addElse new Block [ d.pre_body, guard_if ]
else
cond.addElse new Block [ d.pre_body, body ]
The top of the loop construct.
top_body = new Block [ break_assign, continue_assign, next_assign, cond ]
top_func = new Code [ k_param ], top_body, 'icedgen'
top_assign = new Assign top_id, top_func, null, { icedlocal : yes }
top_call = new Call top_id, [ k_id ]
top_statements = []
top_statements = top_statements.concat d.init if d.init
if rvar
rvar_init = new Assign rvar_value, new Arr
top_statements.push rvar_init
top_statements = top_statements.concat [ top_assign, top_call ]
top_block = new Block top_statements
icedCallContinuation : ->
@body.icedThreadReturn new IcedTailCall iced.const.n_while
icedCompileIced: (o) ->
opts = { @condition, @body, @guard }
if @returns
opts.rvar = o.scope.freeVariable 'results'
b = @icedWrap opts
return b.compileNode o
Simple Arithmetic and logical operations. Performs some conversion from CoffeeScript operations into their JavaScript equivalents.
exports.Op = class Op extends Base
constructor: (op, first, second, flip ) ->
super()
return new In first, second if op is 'in'
if op is 'do'
return @generateDo first
if op is 'new'
return first.newInstance() if first instanceof Call and not first.do and not first.isNew
first = new Parens first if first instanceof Code and first.bound or first.do
@operator = CONVERSIONS[op] or op
@first = first
@second = second
@flip = !!flip
return this
The map of conversions from CoffeeScript to JavaScript symbols.
CONVERSIONS =
'==': '==='
'!=': '!=='
'of': 'in'
The map of invertible operators.
INVERSIONS =
'!==': '==='
'===': '!=='
children: ['first', 'second']
isSimpleNumber: NO
isUnary: ->
not @second
isComplex: ->
not (@isUnary() and @operator in ['+', '-']) or @first.isComplex()
Am I capable of Python-style comparison chaining?
isChainable: ->
@operator in ['<', '>', '>=', '<=', '===', '!==']
invert: ->
if @isChainable() and @first.isChainable()
allInvertable = yes
curr = this
while curr and curr.operator
allInvertable and= (curr.operator of INVERSIONS)
curr = curr.first
return new Parens(this).invert() unless allInvertable
curr = this
while curr and curr.operator
curr.invert = !curr.invert
curr.operator = INVERSIONS[curr.operator]
curr = curr.first
this
else if op = INVERSIONS[@operator]
@operator = op
if @first.unwrap() instanceof Op
@first.invert()
this
else if @second
new Parens(this).invert()
else if @operator is '!' and (fst = @first.unwrap()) instanceof Op and
fst.operator in ['!', 'in', 'instanceof']
fst
else
new Op '!', this
unfoldSoak: (o) ->
@operator in ['++', '--', 'delete'] and unfoldSoak o, this, 'first'
generateDo: (exp) ->
passedParams = []
func = if exp instanceof Assign and (ref = exp.value.unwrap()) instanceof Code
ref
else
exp
for param in func.params or []
if param.value
passedParams.push param.value
delete param.value
else
passedParams.push param
call = new Call exp, passedParams
call.do = yes
call
compileNode: (o) ->
isChain = @isChainable() and @first.isChainable()
In chains, there's no need to wrap bare obj literals in parens, as the chained expression is wrapped.
@first.front = @front unless isChain
if @operator is 'delete' and o.scope.check(@first.unwrapAll().value)
@error 'delete operand may not be argument or var'
if @operator in ['--', '++'] and @first.unwrapAll().value in STRICT_PROSCRIBED
@error "cannot increment/decrement \"#{@first.unwrapAll().value}\""
return @compileUnary o if @isUnary()
return @compileChain o if isChain
return @compileExistence o if @operator is '?'
answer = [].concat @first.compileToFragments(o, LEVEL_OP), @makeCode(' ' + @operator + ' '),
@second.compileToFragments(o, LEVEL_OP)
if o.level <= LEVEL_OP then answer else @wrapInBraces answer
Mimic Python's chained comparisons when multiple comparison operators are used sequentially. For example:
bin/coffee -e 'console.log 50 < 65 > 10'
true
compileChain: (o) ->
[@first.second, shared] = @first.second.cache o
fst = @first.compileToFragments o, LEVEL_OP
fragments = fst.concat @makeCode(" #{if @invert then '&&' else '||'} "),
(shared.compileToFragments o), @makeCode(" #{@operator} "), (@second.compileToFragments o, LEVEL_OP)
@wrapInBraces fragments
Keep reference to the left expression, unless this an existential assignment
compileExistence: (o) ->
if !o.isExistentialEquals and @first.isComplex()
ref = new Literal o.scope.freeVariable 'ref'
fst = new Parens new Assign ref, @first
else
fst = @first
ref = fst
new If(new Existence(fst), ref, type: 'if').addElse(@second).compileToFragments o
Compile a unary Op.
compileUnary: (o) ->
parts = []
op = @operator
parts.push [@makeCode op]
if op is '!' and @first instanceof Existence
@first.negated = not @first.negated
return @first.compileToFragments o
if o.level >= LEVEL_ACCESS
return (new Parens this).compileToFragments o
plusMinus = op in ['+', '-']
parts.push [@makeCode(' ')] if op in ['new', 'typeof', 'delete'] or
plusMinus and @first instanceof Op and @first.operator is op
if (plusMinus and @first instanceof Op) or (op is 'new' and @first.isStatement o)
@first = new Parens @first
parts.push @first.compileToFragments o, LEVEL_OP
parts.reverse() if @flip
@joinFragmentArrays parts, ''
toString: (idt) ->
super idt, @constructor.name + ' ' + @operator
icedWrapContinuation : -> @icedCallContinuationFlag
exports.In = class In extends Base
constructor: (@object, @array) ->
super()
children: ['object', 'array']
invert: NEGATE
compileNode: (o) ->
if @array instanceof Value and @array.isArray()
for obj in @array.base.objects when obj instanceof Splat
hasSplat = yes
break
compileOrTest
only if we have an array literal with no splats
return @compileOrTest o unless hasSplat
@compileLoopTest o
compileOrTest: (o) ->
return [@makeCode("#{!!@negated}")] if @array.base.objects.length is 0
[sub, ref] = @object.cache o, LEVEL_OP
[cmp, cnj] = if @negated then [' !== ', ' && '] else [' === ', ' || ']
tests = []
for item, i in @array.base.objects
if i then tests.push @makeCode cnj
tests = tests.concat (if i then ref else sub), @makeCode(cmp), item.compileToFragments(o, LEVEL_ACCESS)
if o.level < LEVEL_OP then tests else @wrapInBraces tests
compileLoopTest: (o) ->
[sub, ref] = @object.cache o, LEVEL_LIST
fragments = [].concat @makeCode(utility('indexOf') + ".call("), @array.compileToFragments(o, LEVEL_LIST),
@makeCode(", "), ref, @makeCode(") " + if @negated then '< 0' else '>= 0')
return fragments if fragmentsToText(sub) is fragmentsToText(ref)
fragments = sub.concat @makeCode(', '), fragments
if o.level < LEVEL_LIST then fragments else @wrapInBraces fragments
toString: (idt) ->
super idt, @constructor.name + if @negated then '!' else ''
A Slot is an argument passed to defer(..)
. It's a bit different
from a normal parameters, since it's trying to implement pass-by-reference.
It's used only in concert with the Defer class. Splats and Values
can be converted to slots with the icedToSlot
method.
exports.Slot = class Slot extends Base
constructor : (index, value, suffix, splat) ->
super()
@index = index
@value = value
@suffix = suffix
@splat = splat
@access = null
addAccess : (a) ->
@access = a
this
children : [ 'value', 'suffix' ]
exports.Defer = class Defer extends Base
constructor : (args, @lineno) ->
super()
@slots = flatten (a.icedToSlot i for a,i in args)
@params = []
@vars = []
@custom = false
children : ['slots' ]
Most deferrals are not "custom", meaning they assume
__iced_deferrals as a this
object. Rendezvous and others
are custom, since there is an object that's acting as this
setCustom : () ->
@custom = true
@
Count hidden parameters up from 1. Make a note of which parameter we passed out. Return a copy of that parameter, in case we mutate it later before we output it.
newParam : ->
l = "#{iced.const.slot}_#{@params.length + 1}"
@params.push new Param new Literal l
new Value new Literal l
makeAssignFn - Implement C++-style pass-by-reference in Coffee
the 'assign_fn' returned by here will set all parameters to defer() to have the appropriate values after the defer is fulfilled. The four cases to consider are listed in the following call:
defer(x, a.b, c.d[i], rest...)
Case 1 -- defer(x) -- Regular assignment to a local variable Case 2 -- defer(a.b) -- Assignment to an object; must capture object when defer() is called Case 3 -- defer(c.d[i]) -- Assignment to an array slot; must capture array and slot index with defer() is called Case 4 -- defer(rest...) -- rest is an array, assign it to all leftover arguments.
There is a special subcase of Case 1, which we call case 1(b):
defer _
In this case, the slot used is the return value for the surrounding await call, for cases such as:
x = await foo defer _
makeAssignFn : (o) ->
return null if @slots.length is 0
assignments = []
args = []
i = 0
for s in @slots
i = s.index
a = new Value new Literal "arguments"
i_lit = new Value new Literal i
if s.splat # case 4
func = new Value new Literal(utility 'slice')
func.add new Access new Value new Literal 'call'
call = new Call func, [ a, i_lit ]
slot = s.value
@vars.push slot
assign = new Assign slot, call
else
a.add new Index i_lit
if s.access
a.add s.access
if not s.suffix # case 1
lit = s.value.compile o, LEVEL_TOP
if lit is "_"
slot = new Value new Literal iced.const.deferrals
slot.add new Access new Value new Literal iced.const.retslot
else
slot = s.value
@vars.push slot
else
args.push s.value
slot = @newParam()
if s.suffix instanceof Index # case 3
prop = new Index @newParam()
args.push s.suffix.index
else # case 2
prop = s.suffix
slot.add prop
assign = new Assign slot, a
assignments.push assign
block = new Block assignments
inner_fn = new Code [], block, 'icedgen'
outer_block = new Block [ new Return inner_fn ]
outer_fn = new Code @params, outer_block, 'icedgen'
call = new Call outer_fn, args
transform : (o) ->
meth = new Value new Literal iced.const.defer_method
In the custom case, there's a foo.defer, and we're going to
use the foo
as the this object. Otherwise, we'll
use the __iced_deferrals
in the current scope as the this
object
if @custom
fn = meth
else
fn = new Value new Literal iced.const.deferrals
now, fn is '__iced_deferrals.defer'
fn.add new Access meth
There is one argument to Deferrals.defer(), which is a dictionary. The dictionary currently only has one slot: assign_fn, which indicates a function. More slots will be needed if we ever want to keep track of iced-aware stack traces.
assignments = []
if (assign_fn = @makeAssignFn o)
assignments.push new Assign(new Value(new Literal(iced.const.assign_fn)),
assign_fn, "object")
ln_lhs = new Value new Literal iced.const.lineno
ln_rhs = new Value new Literal @lineno
ln_assign = new Assign ln_lhs, ln_rhs, "object"
assignments.push ln_assign
if @custom
context_lhs = new Value new Literal iced.const.context
context_rhs = new Value new Literal iced.const.deferrals
context_assign = new Assign context_lhs, context_rhs, "object"
assignments.push context_assign
o = new Obj assignments
Return the final call
new Call fn, [ new Value o ]
compileNode : (o) ->
call = @transform o
for v in @vars
name = v.compile o, LEVEL_LIST
scope = o.scope
scope.add name, 'var'
call.compileNode o
icedWalkAst : (p, o) ->
@icedHasAutocbFlag = o.foundAutocb
o.foundDefer = true
@parentFunc = o.currFunc
super p, o
exports.Await = class Await extends Base
constructor : (@body) ->
super()
transform : (o) ->
body = @body
name = iced.const.deferrals
o.scope.add name, 'var'
lhs = new Value new Literal name
cls = new Value new Literal iced.const.ns
cls.add(new Access(new Value new Literal iced.const.Deferrals))
assignments = []
if n = @parentFunc?.icedPassedDeferral
cb_lhs = new Value new Literal iced.const.parent
cb_rhs = new Value new Literal n
cb_assignment = new Assign cb_lhs, cb_rhs, "object"
assignments.push cb_assignment
if o.filename?
fn_lhs = new Value new Literal iced.const.filename
Replace '\' with '\' to make the emitted code safe for Windows paths. See Issue #84. Thanks to @Deathspike for this patch
fn_rhs = new Value new Literal '"' + o.filename.replace('\\', '\\\\') + '"'
fn_assignment = new Assign fn_lhs, fn_rhs, "object"
assignments.push fn_assignment
if n = @parentFunc?.icedTraceName()
func_lhs = new Value new Literal iced.const.funcname
func_rhs = new Value new Literal '"' + n + '"'
func_assignment = new Assign func_lhs, func_rhs, "object"
assignments.push func_assignment
trace = new Obj assignments, true
call = new Call cls, [ (new Value new Literal iced.const.k), trace ]
rhs = new Op "new", call
assign = new Assign lhs, rhs
body.unshift assign
meth = lhs.copy().add new Access new Value new Literal iced.const.fulfill
call = new Call meth, []
body.push (call)
@body = body
children: ['body']
??? Revisit!
isStatement: -> YES
makeReturn : THIS
compileNode: (o) ->
@transform(o)
@body.compileNode o
We still need to walk our children to see if there are any embedded function which might also be iced. But we're always going to report to our parent that we are iced, since we are!
icedWalkAst : (p, o) ->
@icedHasAutocbFlag = o.foundAutocb
@parentFunc = o.currFunc
p = p || this
@icedParentAwait = p
super p, o
@icedNodeFlag = o.foundAwaitFunc = o.foundAwait = true
By default, the iced libraries are require'd via nodejs' require. You can change this behavior on the command line:
-I inline --- inlines a simplified runtime to the output file -I node --- force node.js inclusion -I window --- attach the inlined runtime to the window.* object -I none --- no inclusion, do it yourself...
class IcedRuntime extends Block
constructor: (@foundDefer, @foundAwait) ->
super()
compileNode: (o, level) ->
@expressions = []
v = if o.runtime then o.runtime
else if o.bare then "none"
else if @foundDefer then "node"
else "none"
if o.runtime and not @foundDefer and not o.runforce
v = "none"
window_mode = false
window_val = null
inc = null
inc = switch (v)
when "inline", "window"
window_mode = true if v is "window"
if window_mode
window_val = new Value new Literal v
InlineRuntime.generate(if window_val then window_val.copy() else null)
when "node", "browserify"
if v is "browserify"
modname = "iced-coffee-script/lib/coffee-script/iced"
accessname = iced.const.runtime
else
modname = "iced-coffee-script"
accessname = iced.const.ns
file = new Literal "'#{modname}'"
access = new Access new Literal accessname
req = new Value new Literal "require"
call = new Call req, [ file ]
callv = new Value call
callv.add access
ns = new Value new Literal iced.const.ns
new Assign ns, callv
when "none" then null
else throw SyntaxError "unexpected flag IcedRuntime #{v}"
@push inc if inc
if @foundAwait
Emit iced_k = iced_k_noop = function(){}
rhs = new Code [], new Block []
lhs_vec = []
for k in [ iced.const.k_noop, iced.const.k ]
val = new Value new Literal k
Add window. if necessary
if window_val
klass = window_val.copy()
klass.add new Access val
val = klass
lhs_vec.push val
assign = rhs
for v in lhs_vec
assign = new Assign v, assign
@push assign
if @isEmpty() then []
else super o
icedWalkAst : (p,o) ->
@icedHasAutocbFlag = o.foundAutocb
super p, o
exports.Try = class Try extends Base
constructor: (@attempt, @errorVariable, @recovery, @ensure) ->
children: ['attempt', 'recovery', 'ensure']
isStatement: YES
jumps: (o) -> @attempt.jumps(o) or @recovery?.jumps(o)
makeReturn: (res) ->
@attempt = @attempt .makeReturn res if @attempt
@recovery = @recovery.makeReturn res if @recovery
this
Compilation is more or less as you would expect -- the finally clause is optional, the catch is not.
compileNode: (o) ->
o.indent += TAB
tryPart = @attempt.compileToFragments o, LEVEL_TOP
catchPart = if @recovery
placeholder = new Literal '_error'
@recovery.unshift new Assign @errorVariable, placeholder if @errorVariable
[].concat @makeCode(" catch ("), placeholder.compileToFragments(o), @makeCode(") {\n"),
@recovery.compileToFragments(o, LEVEL_TOP), @makeCode("\n#{@tab}}")
else unless @ensure or @recovery
[@makeCode(' catch (_error) {}')]
else
[]
ensurePart = if @ensure then ([].concat @makeCode(" finally {\n"), @ensure.compileToFragments(o, LEVEL_TOP),
@makeCode("\n#{@tab}}")) else []
[].concat @makeCode("#{@tab}try {\n"),
tryPart,
@makeCode("\n#{@tab}}"), catchPart, ensurePart
exports.Throw = class Throw extends Base
constructor: (@expression) ->
super()
children: ['expression']
isStatement: YES
jumps: NO
A Throw is already a return, of sorts...
makeReturn: THIS
compileNode: (o) ->
[].concat @makeCode(@tab + "throw "), @expression.compileToFragments(o), @makeCode(";")
Checks a variable for existence -- not null and not undefined. This is
similar to .nil?
in Ruby, and avoids having to consult a JavaScript truth
table.
exports.Existence = class Existence extends Base
constructor: (@expression) ->
super()
children: ['expression']
invert: NEGATE
compileNode: (o) ->
@expression.front = @front
code = @expression.compile o, LEVEL_OP
if IDENTIFIER.test(code) and not o.scope.check code
[cmp, cnj] = if @negated then ['===', '||'] else ['!==', '&&']
code = "typeof #{code} #{cmp} \"undefined\" #{cnj} #{code} #{cmp} null"
else
do not use strict equality here; it will break existing code
code = "#{code} #{if @negated then '==' else '!='} null"
[@makeCode(if o.level <= LEVEL_COND then code else "(#{code})")]
An extra set of parentheses, specified explicitly in the source. At one time we tried to clean up the results by detecting and removing redundant parentheses, but no longer -- you can put in as many as you please.
Parentheses are a good way to force any statement to become an expression.
exports.Parens = class Parens extends Base
constructor: (@body) ->
super()
children: ['body']
unwrap : -> @body
isComplex : -> @body.isComplex()
compileNode: (o) ->
expr = @body.unwrap()
if expr instanceof Value and expr.isAtomic()
expr.front = @front
return expr.compileToFragments o
fragments = expr.compileToFragments o, LEVEL_PAREN
bare = o.level < LEVEL_OP and (expr instanceof Op or expr instanceof Call or
(expr instanceof For and expr.returns))
if bare then fragments else @wrapInBraces fragments
CoffeeScript's replacement for the for loop is our array and object comprehensions, that compile into for loops here. They also act as an expression, able to return the result of each filtered iteration.
Unlike Python array comprehensions, they can be multi-line, and you can pass the current index of the loop as a second parameter. Unlike Ruby blocks, you can map and filter in a single pass.
exports.For = class For extends While
constructor: (body, source) ->
super()
{@source, @guard, @step, @name, @index} = source
@body = Block.wrap [body]
@own = !!source.own
@object = !!source.object
[@name, @index] = [@index, @name] if @object
@index.error 'index cannot be a pattern matching expression' if @index instanceof Value
@range = @source instanceof Value and @source.base instanceof Range and not @source.properties.length
@pattern = @name instanceof Value
@index.error 'indexes do not apply to range loops' if @range and @index
@name.error 'cannot pattern match over range loops' if @range and @pattern
@index.error 'cannot use own with for-in' if @own and not @object
@returns = false
children: ['body', 'source', 'guard', 'step']
Welcome to the hairiest method in all of CoffeeScript. Handles the inner loop, filtering, stepping, and result saving for array, object, and range comprehensions. Some of the generated code can be shared in common, and some cannot.
compileNode: (o) ->
body = Block.wrap [@body]
lastJumps = last(body.expressions)?.jumps()
@returns = no if lastJumps and lastJumps instanceof Return
source = if @range then @source.base else @source
scope = o.scope
name = @name and (@name.compile o, LEVEL_LIST)
index = @index and (@index.compile o, LEVEL_LIST)
scope.find(name) if name and not @pattern
scope.find(index) if index
rvar = scope.freeVariable 'results' if @returns
ivar = (@object and index) or scope.freeVariable 'i'
kvar = (@range and name) or index or ivar
kvarAssign = if kvar isnt ivar then "#{kvar} = " else ""
if @step and not @range
[step, stepVar] = @cacheToCodeFragments @step.cache o, LEVEL_LIST
stepNum = stepVar.match SIMPLENUM
name = ivar if @pattern
varPart = ''
guardPart = ''
defPart = ''
idt1 = @tab + TAB
source.icedStatementAssertion()
return @icedCompileIced(o, { stepVar, body, rvar, kvar, @guard }) if @icedNodeFlag
if @range
forPartFragments = source.compileToFragments merge(o, {index: ivar, name, @step})
else
svar = @source.compile o, LEVEL_LIST
if (name or @own) and not IDENTIFIER.test svar
defPart += "#{@tab}#{ref = scope.freeVariable 'ref'} = #{svar};\n"
svar = ref
if name and not @pattern
namePart = "#{name} = #{svar}[#{kvar}]"
if not @object
defPart += "#{@tab}#{step};\n" if step isnt stepVar
lvar = scope.freeVariable 'len' unless @step and stepNum and down = (+stepNum < 0)
declare = "#{kvarAssign}#{ivar} = 0, #{lvar} = #{svar}.length"
declareDown = "#{kvarAssign}#{ivar} = #{svar}.length - 1"
compare = "#{ivar} < #{lvar}"
compareDown = "#{ivar} >= 0"
if @step
if stepNum
if down
compare = compareDown
declare = declareDown
else
compare = "#{stepVar} > 0 ? #{compare} : #{compareDown}"
declare = "(#{stepVar} > 0 ? (#{declare}) : #{declareDown})"
increment = "#{ivar} += #{stepVar}"
else
increment = "#{if kvar isnt ivar then "++#{ivar}" else "#{ivar}++"}"
forPartFragments = [@makeCode("#{declare}; #{compare}; #{kvarAssign}#{increment}")]
if @returns
resultPart = "#{@tab}#{rvar} = [];\n"
returnResult = if @icedHasAutocbFlag then "\n#{@tab}#{iced.const.autocb}(#{rvar}); return;"
else "\n#{@tab}return #{rvar};"
body.makeReturn rvar
if @guard
if body.expressions.length > 1
body.expressions.unshift new If (new Parens @guard).invert(), new Literal "continue"
else
body = Block.wrap [new If @guard, body] if @guard
if @pattern
body.expressions.unshift new Assign @name, new Literal "#{svar}[#{kvar}]"
defPartFragments = [].concat @makeCode(defPart), @pluckDirectCall(o, body)
varPart = "\n#{idt1}#{namePart};" if namePart
if @object
forPartFragments = [@makeCode("#{kvar} in #{svar}")]
guardPart = "\n#{idt1}if (!#{utility 'hasProp'}.call(#{svar}, #{kvar})) continue;" if @own
bodyFragments = body.compileToFragments merge(o, indent: idt1), LEVEL_TOP
if bodyFragments and (bodyFragments.length > 0)
bodyFragments = [].concat @makeCode("\n"), bodyFragments, @makeCode("\n")
[].concat defPartFragments, @makeCode("#{resultPart or ''}#{@tab}for ("),
forPartFragments, @makeCode(") {#{guardPart}#{varPart}"), bodyFragments,
@makeCode("#{@tab}}#{returnResult or ''}")
pluckDirectCall: (o, body) ->
defs = []
for expr, idx in body.expressions
expr = expr.unwrapAll()
continue unless expr instanceof Call
val = expr.variable.unwrapAll()
continue unless (val instanceof Code) or
(val instanceof Value and
val.base?.unwrapAll() instanceof Code and
val.properties.length is 1 and
val.properties[0].name?.value in ['call', 'apply'])
fn = val.base?.unwrapAll() or val
ref = new Literal o.scope.freeVariable 'fn'
base = new Value ref
if val.base
[val.base, base] = [base, val]
body.expressions[idx] = new Call base, expr.args
defs = defs.concat @makeCode(@tab), (new Assign(ref, fn).compileToFragments(o, LEVEL_TOP)), @makeCode(';\n')
defs
icedCompileIced: (o, d) ->
body = d.body
condition = null
init = []
step = null
scope = o.scope
pre_body = new Block []
Handle 'for k,v of obj'
if @object
_ref = source
ref = scope.freeVariable 'ref'
ref_val = new Value new Literal ref
a1 = new Assign ref_val, @source
keys = for k of _ref k
keys = scope.freeVariable 'keys'
keys_val = new Value new Literal keys
key = scope.freeVariable 'k'
key_lit = new Literal key
key_val = new Value key_lit
empty_arr = new Value new Arr
loop_body = new Block [ key_val ]
loop_source = { object : yes, name : key_lit, source : ref_val }
loop_keys = new For loop_body, loop_source
a2 = new Assign keys_val, loop_keys
_i = 0
iname = scope.freeVariable 'i'
ival = new Value new Literal iname
a3 = new Assign ival, new Value new Literal 0
init = [ a1, a2, a3 ]
_i < keys.length
keys_len = keys_val.copy()
keys_len.add new Access new Value new Literal "length"
condition = new Op '<', ival, keys_len
_i++
step = new Op '++', ival
value = _ref[name]
if @name
source_access = ref_val.copy()
source_access.add new Index @index
a5 = new Assign @name, source_access
pre_body.unshift a5
key = keys[_i]
keys_access = keys_val.copy()
keys_access.add new Index ival
a4 = new Assign @index, keys_access
pre_body.unshift a4
Handle the case of 'for i in [0..10]'
else if @range and @name
rop = if @source.base.exclusive then '<' else '<='
condition = new Op rop, @name, @source.base.to
init = [ new Assign @name, @source.base.from ]
if @step?
step = new Op "+=", @name, @step
else
step = new Op '++', @name
Handle the case of 'for i,blah in arr'
else if ! @range and @name
kval = new Value new Literal d.kvar
len = scope.freeVariable 'len'
ref = scope.freeVariable 'ref'
ref_val = new Value new Literal ref
len_val = new Value new Literal len
a1 = new Assign ref_val, @source
len_rhs = ref_val.copy().add new Access new Value new Literal "length"
a2 = new Assign len_val, len_rhs
a3 = new Assign kval, new Value new Literal 0
init = [ a1, a2, a3 ]
condition = new Op '<', kval, len_val
step = new Op '++', kval
ref_val_copy = ref_val.copy()
ref_val_copy.add new Index kval
a4 = new Assign @name, ref_val_copy
pre_body.unshift a4
rvar = d.rvar
guard = d.guard
b = @icedWrap { condition, body, init, step, rvar, guard, pre_body }
b.compileNode o
exports.Switch = class Switch extends Base
constructor: (@subject, @cases, @otherwise) ->
super()
children: ['subject', 'cases', 'otherwise']
isStatement: YES
jumps: (o = {block: yes}) ->
for [conds, block] in @cases
return block if block.jumps o
@otherwise?.jumps o
makeReturn: (res) ->
pair[1].makeReturn res for pair in @cases
@otherwise or= new Block [new Literal 'void 0'] if res
@otherwise?.makeReturn res
this
compileNode: (o) ->
@subject.icedStatementAssertion() if @subject
idt1 = o.indent + TAB
idt2 = o.indent = idt1 + TAB
fragments = [].concat @makeCode(@tab + "switch ("),
(if @subject then @subject.compileToFragments(o, LEVEL_PAREN) else @makeCode "false"),
@makeCode(") {\n")
for [conditions, block], i in @cases
for cond in flatten [conditions]
cond = cond.invert() unless @subject
fragments = fragments.concat @makeCode(idt1 + "case "), cond.compileToFragments(o, LEVEL_PAREN), @makeCode(":\n")
fragments = fragments.concat body, @makeCode('\n') if (body = block.compileToFragments o, LEVEL_TOP).length > 0
break if i is @cases.length - 1 and not @otherwise
expr = @lastNonComment block.expressions
continue if expr instanceof Return or (expr instanceof Literal and expr.jumps() and expr.value isnt 'debugger')
fragments.push cond.makeCode(idt2 + 'break;\n')
if @otherwise and @otherwise.expressions.length
fragments.push @makeCode(idt1 + "default:\n"), (@otherwise.compileToFragments o, LEVEL_TOP)..., @makeCode("\n")
fragments.push @makeCode @tab + '}'
fragments
icedCallContinuation : ->
for [condition,block] in @cases
block.icedThreadReturn()
if @otherwise?
@otherwise.icedThreadReturn()
else
See github issue #55. If no else: was specified, we still need to call back the current continuation
@otherwise = new Block [ new IcedTailCall ]
If/else statements. Acts as an expression by pushing down requested returns to the last line of each clause.
Single-expression Ifs are compiled into conditional operators if possible, because ternaries are already proper expressions, and don't need conversion.
exports.If = class If extends Base
constructor: (condition, @body, options = {}) ->
super()
@condition = if options.type is 'unless' then condition.invert() else condition
@elseBody = null
@isChain = false
{@soak} = options
children: ['condition', 'body', 'elseBody']
bodyNode: -> @body?.unwrap()
elseBodyNode: -> @elseBody?.unwrap()
Rewrite a chain of Ifs to add a default case as the final else.
addElse: (elseBody) ->
if @isChain
@elseBodyNode().addElse elseBody
else
@isChain = elseBody instanceof If
@elseBody = @ensureBlock elseBody
@elseBody.updateLocationDataIfMissing elseBody.locationData
this
The If only compiles into a statement if either of its bodies needs to be a statement. Otherwise a conditional operator is safe.
isStatement: (o) ->
o?.level is LEVEL_TOP or
@bodyNode().isStatement(o) or @elseBodyNode()?.isStatement(o)
jumps: (o) -> @body.jumps(o) or @elseBody?.jumps(o)
compileNode: (o) ->
@condition.icedStatementAssertion()
if @isStatement o or @icedIsCpsPivot() then @compileStatement o else @compileExpression o
makeReturn: (res) ->
@elseBody or= new Block [new Literal 'void 0'] if res
@body and= new Block [@body.makeReturn res]
@elseBody and= new Block [@elseBody.makeReturn res]
this
ensureBlock: (node) ->
if node instanceof Block then node else new Block [node]
Compile the If
as a regular if-else statement. Flattened chains
force inner else bodies into statement form.
compileStatement: (o) ->
child = del o, 'chainChild'
exeq = del o, 'isExistentialEquals'
if exeq
return new If(@condition.invert(), @elseBodyNode(), type: 'if').compileToFragments o
indent = o.indent + TAB
cond = @condition.compileToFragments o, LEVEL_PAREN
body = @ensureBlock(@body).compileToFragments merge o, {indent}
ifPart = [].concat @makeCode("if ("), cond, @makeCode(") {\n"), body, @makeCode("\n#{@tab}}")
ifPart.unshift @makeCode @tab unless child
return ifPart unless @elseBody
answer = ifPart.concat @makeCode(' else ')
if @isChain
o.chainChild = yes
answer = answer.concat @elseBody.unwrap().compileToFragments o, LEVEL_TOP
else
answer = answer.concat @makeCode("{\n"), @elseBody.compileToFragments(merge(o, {indent}), LEVEL_TOP), @makeCode("\n#{@tab}}")
answer
Compile the If
as a conditional operator.
compileExpression: (o) ->
cond = @condition.compileToFragments o, LEVEL_COND
body = @bodyNode().compileToFragments o, LEVEL_LIST
alt = if @elseBodyNode() then @elseBodyNode().compileToFragments(o, LEVEL_LIST) else [@makeCode('void 0')]
fragments = cond.concat @makeCode(" ? "), body, @makeCode(" : "), alt
if o.level >= LEVEL_COND then @wrapInBraces fragments else fragments
unfoldSoak: ->
@soak and this
propogate the closing continuation call down both branches of the if. note this prevents if ...else if... inline chaining, and makes it fully nested if { .. } else { if { } ..} ..'s
icedCallContinuation : ->
if @elseBody
@elseBody.icedThreadReturn()
@isChain = false
else
@addElse new IcedTailCall
@body.icedThreadReturn()
Faux-nodes are never created by the grammar, but are used during code generation to generate other combinations of nodes.
A faux-node used to wrap an expressions body in a closure.
Closure =
Wrap the expressions body, unless it contains a pure statement,
in which case, no dice. If the body mentions this
or arguments
,
then make sure that the closure wrapper preserves the original values.
wrap: (expressions, statement, noReturn) ->
return expressions if expressions.jumps()
func = new Code [], Block.wrap [expressions]
args = []
argumentsNode = expressions.contains @isLiteralArguments
if argumentsNode and expressions.classBody
argumentsNode.error "Class bodies shouldn't reference arguments"
if argumentsNode or expressions.contains @isLiteralThis
meth = new Literal if argumentsNode then 'apply' else 'call'
args = [new Literal 'this']
args.push new Literal 'arguments' if argumentsNode
func = new Value func, [new Access meth]
func.noReturn = noReturn
call = new Call func, args
if statement then Block.wrap [call] else call
isLiteralArguments: (node) ->
node instanceof Literal and node.value is 'arguments' and not node.asKey
isLiteralThis: (node) ->
(node instanceof Literal and node.value is 'this' and not node.asKey) or
(node instanceof Code and node.bound) or
(node instanceof Call and node.isSuper)
Unfold a node's child if soak, then tuck the node under created If
unfoldSoak = (o, parent, name) ->
return unless ifn = parent[name].unfoldSoak o
parent[name] = ifn.body
ifn.body = new Value parent
ifn
CpsCascade =
wrap: (statement, rest, returnValue, o) ->
func = new Code [ new Param new Literal iced.const.k ],
(Block.wrap [ statement ]), 'icedgen'
args = []
if returnValue
returnValue.bindName o
args.push returnValue
block = Block.wrap [ rest ]
Optimization! If the block is just a tail call to another continuation that can be inlined, then we just call that call directly.
if (e = block.icedGetSingle()) and e instanceof IcedTailCall and e.canInline()
cont = e.extractFunc()
else
cont = new Code args, block, 'icedgen'
call = new Call func, [ cont ]
new Block [ call ]
At the end of a iced if, loop, or switch statement, we tail call off to the next continuation
class IcedTailCall extends Base
constructor : (@func, val = null) ->
super()
@func = iced.const.k unless @func
@value = val
children : [ 'value' ]
assignValue : (v) ->
@value = v
canInline : ->
return not @value or @value instanceof IcedReturnValue
literalFunc: -> new Literal @func
extractFunc: -> new Value @literalFunc()
compileNode : (o) ->
f = @literalFunc()
out = if o.level is LEVEL_TOP
if @value
new Block [ @value, new Call f ]
else
new Call f
else
args = if @value then [ @value ] else []
new Call f, args
out.compileNode o
class IcedReturnValue extends Param
@counter : 0
constructor : () ->
super null, null, no
bindName : (o) ->
l = "#{o.scope.freeVariable iced.const.param, no}_#{IcedReturnValue.counter++}"
@name = new Literal l
compile : (o) ->
@bindName o if not @name
super o
InlineRuntime =
Generate this code, inline. Is there a better way?
iced = Deferrals : class constructor: (@continuation) -> @count = 1 @ret = null _fulfill : -> @continuation @ret if not --@count defer : (defer_params) -> @count++ (inner_params...) => defer_params?.assign_fn?.apply(null, inner_params) @_fulfill() findDeferral : (args) -> null
generate : (ns_window) ->
k = new Literal "continuation"
cnt = new Literal "count"
cn = new Value new Literal iced.const.Deferrals
ns = new Value new Literal iced.const.ns
if ns_window # window.iced = ...
ns_window.add new Access ns
ns = ns_window
k_member = new Value new Literal "this"
k_member.add new Access k
p1 = new Param k_member
cnt_member = new Value new Literal "this"
cnt_member.add new Access cnt
ret_member = new Value new Literal "this"
ret_member.add new Access new Value new Literal iced.const.retslot
a1 = new Assign cnt_member, new Value new Literal 1
a2 = new Assign ret_member, NULL()
constructor_params = [ p1 ]
constructor_body = new Block [ a1, a2 ]
constructor_code = new Code constructor_params, constructor_body
constructor_name = new Value new Literal "constructor"
constructor_assign = new Assign constructor_name, constructor_code
if_expr = new Call k_member, [ ret_member ]
if_body = new Block [ if_expr ]
decr = new Op '--', cnt_member
if_cond = new Op '!', decr
my_if = new If if_cond, if_body
_fulfill_body = new Block [ my_if ]
_fulfill_code = new Code [], _fulfill_body
_fulfill_name = new Value new Literal iced.const.fulfill
_fulfill_assign = new Assign _fulfill_name, _fulfill_code
Make the defer member: defer : (defer_params) -> @count++ (inner_params...) -> defer_params?.assign_fn?.apply(null, inner_params) @_fulfill()
inc = new Op "++", cnt_member
ip = new Literal "inner_params"
dp = new Literal "defer_params"
dp_value = new Value dp
call_meth = new Value dp
af = new Literal iced.const.assign_fn
call_meth.add new Access af, "soak"
my_apply = new Literal "apply"
call_meth.add new Access my_apply, "soak"
my_null = NULL()
apply_call = new Call call_meth, [ my_null, new Value ip ]
_fulfill_method = new Value new Literal "this"
_fulfill_method.add new Access new Literal iced.const.fulfill
_fulfill_call = new Call _fulfill_method, []
inner_body = new Block [ apply_call, _fulfill_call ]
inner_params = [ new Param ip, null, on ]
inner_code = new Code inner_params, inner_body, "boundfunc"
defer_body = new Block [ inc, inner_code ]
defer_params = [ new Param dp ]
defer_code = new Code defer_params, defer_body
defer_name = new Value new Literal iced.const.defer_method
defer_assign = new Assign defer_name, defer_code
Piece the class together
assignments = [ constructor_assign, _fulfill_assign, defer_assign ]
obj = new Obj assignments, true
body = new Block [ new Value obj ]
klass = new Class null, null, body
klass_assign = new Assign cn, klass, "object"
A stub so that the function still works findDeferral : (args) -> null
outer_block = new Block [ NULL() ]
fn_code = new Code [ ], outer_block
fn_name = new Value new Literal iced.const.findDeferral
fn_assign = new Assign fn_name, fn_code, "object"
A stub trampoline so that it strill works: trampoline : (fn) -> fn()
fn = new Literal "_fn"
tr_block = new Block [ new Call (new Value fn), [] ]
tr_params = [ new Param fn ]
tr_code = new Code tr_params, tr_block
tr_name = new Value new Literal iced.const.trampoline
tr_assign = new Assign tr_name, tr_code, "object"
iced =
Deferrals :
trampoline :
ns_obj = new Obj [ klass_assign, fn_assign, tr_assign ], true
ns_val = new Value ns_obj
new Assign ns, ns_val
UTILITIES =
Correctly set up a prototype chain for inheritance, including a reference
to the superclass for super()
calls, and copies of any static properties.
extends: -> """
function(child, parent) { for (var key in parent) { if (#{utility 'hasProp'}.call(parent, key)) child[key] = parent[key]; } function ctor() { this.constructor = child; } ctor.prototype = parent.prototype; child.prototype = new ctor(); child.__super__ = parent.prototype; return child; }
"""
Create a function bound to the current value of "this".
bind: -> '''
function(fn, me){ return function(){ return fn.apply(me, arguments); }; }
'''
Discover if an item is in an array.
indexOf: -> """
[].indexOf || function(item) { for (var i = 0, l = this.length; i < l; i++) { if (i in this && this[i] === item) return i; } return -1; }
"""
Shortcuts to speed up the lookup time for native functions.
hasProp: -> '{}.hasOwnProperty'
slice : -> '[].slice'
Levels indicate a node's position in the AST. Useful for knowing if parens are necessary or superfluous.
LEVEL_TOP = 1 # ...;
LEVEL_PAREN = 2 # (...)
LEVEL_LIST = 3 # [...]
LEVEL_COND = 4 # ... ? x : y
LEVEL_OP = 5 # !...
LEVEL_ACCESS = 6 # ...[0]
Tabs are two spaces for pretty printing.
TAB = ' '
IDENTIFIER_STR = "[$A-Za-z_\\x7f-\\uffff][$\\w\\x7f-\\uffff]*"
IDENTIFIER = /// ^ #{IDENTIFIER_STR} $ ///
SIMPLENUM = /^[+-]?\d+$/
METHOD_DEF = ///
^
(?:
(#{IDENTIFIER_STR})
\.prototype
(?:
\.(#{IDENTIFIER_STR})
| \[("(?:[^\\"\r\n]|\\.)*"|'(?:[^\\'\r\n]|\\.)*')\]
| \[(0x[\da-fA-F]+ | \d*\.?\d+ (?:[eE][+-]?\d+)?)\]
)
)
|
(#{IDENTIFIER_STR})
$
///
Is a literal value a string?
IS_STRING = /^['"]/
Helper for ensuring that utility functions are assigned at the top level.
utility = (name) ->
ref = "__#{name}"
Scope.root.assign ref, UTILITIES[name]()
ref
multident = (code, tab) ->
code = code.replace /\n/g, '$&' + tab
code.replace /\s+$/, ''